SCICEX SAC Meeting 24 April 2008

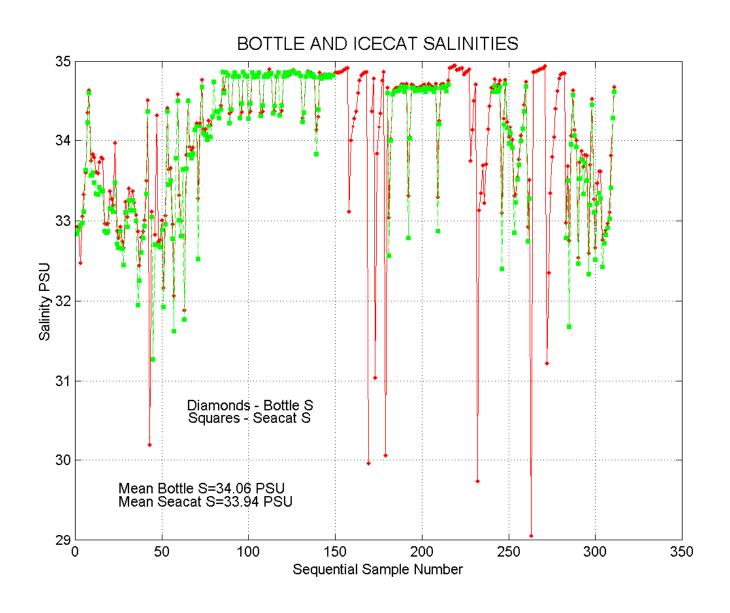
Ray Sambrotto/LDEO

Water sampling – 2 basic approaches

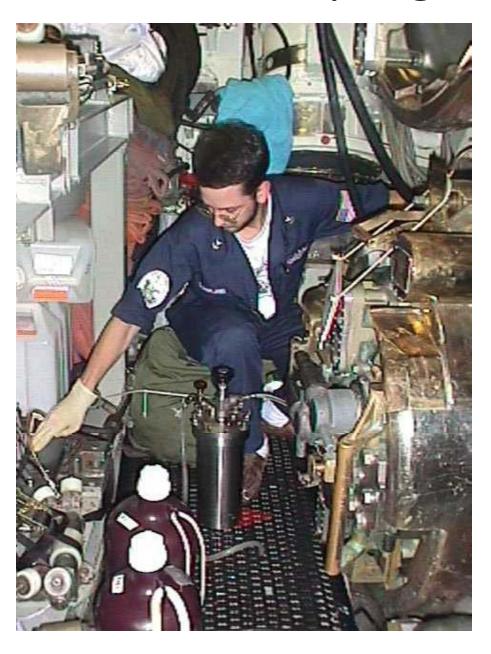
- Underway, continuous sampling via autonomous sensors
 - ◆No on-board processing
 - ◆No sample storage
 - Sensors require periodic calibration by manufacturer
- Discrete water samples
 - Great variety possible
 - Some required to field calibrate autonomous sensors
 - Some need immediate (<24 hr.) processing</p>
 - ◆Others can be stored in various ways (poisoning, -20°C, -80°C)

Autonomous, hull mounted sensors

Sample	Purpose
Temperature Salinity	Core water property Core water property
Oxygen	Water mass tracer; Biological production and recycling
Chl a	Phytoplankton abundance
spectral light absorption & attenuation	Chemical and biological properties (CDOM; plankton composition)


Discrete water samples - 1

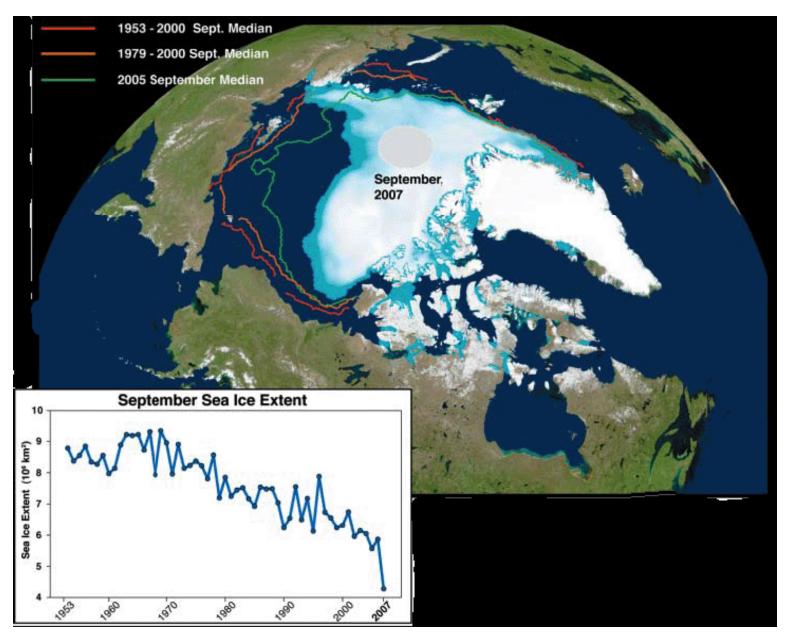
			Collection	On board	Storage
Sample	Purpose	Size	procedure	processing	requirements
				Can be stored for	<u>-</u>
				shore based	
	Core water			measurement or	
	property; Calibrate		Rinse, fill and	measured on	
	salinity sensor on	200	cap a 200 ml	board with an	Room
Salinity	CTD	ml	glass bottle	Autosal	temperature
					Room
	Water mass tracer;				temperature
	Biological production	1		Add reagents,	covered with
	and recycling;			follow Winkler	water for up to
	Calibrate O ₂ sensor	120	Rinse and fill	titration	one day prior
Oxygen	on CTD	ml	120 ml flask	procedures	to titration
				Can be stored for	^
				shore based	
			Filter 500 ml;	measurment or	
	Biological variable;		place filter into	measured in an	
	Calibrate Chl a	500	10 ml 90%	on-board	-20° C, must
Chl a	fluorometer on CTD	ml	acetone	fluorometer	not thaw
Nutrients	Water mass tracers;		Rinse, fill and	Quick freeze as	
(PO ₄ , NO ₃	, Biological production	1	cap a 50 ml	soon as possible	-20° C, must
SiO ₂)	and recycling	50 ml	plastic tube	at -20° C	not thaw

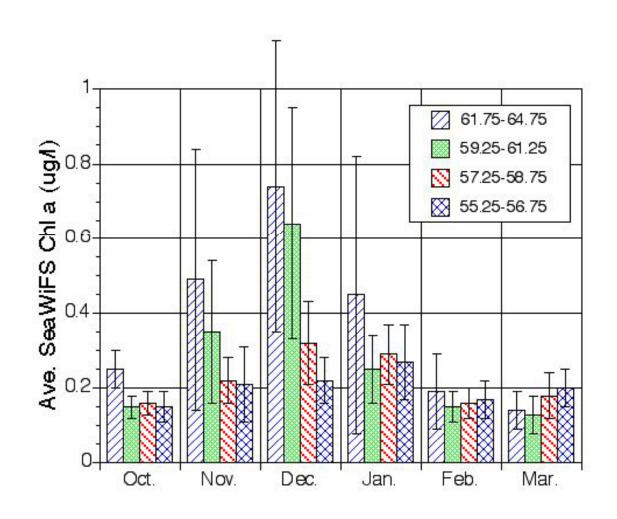

Discrete water samples - 2

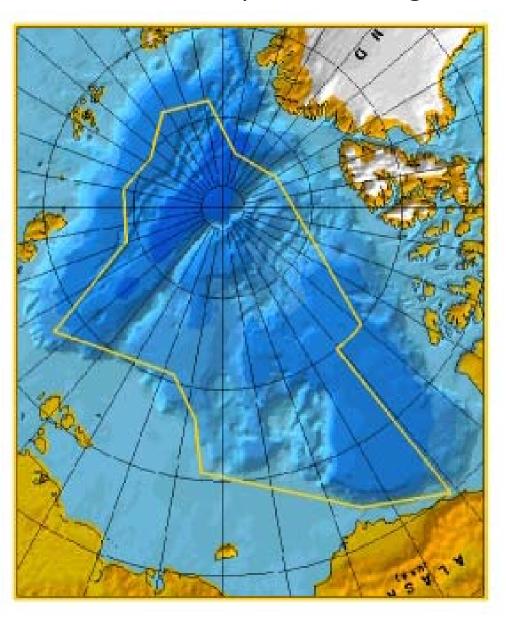
Sample	Purpose	Size	Collection procedure	On board processing	Storage requirements
microplankton & bacterial genomics	Biological diversity & abundance Carbon fluxes and	5-10 liters	Filter water through cartridge Rinse, fill and add	None	-80° C, must not thaw
Inorganic carbon system	-	250 ml	•	None	Room temperature
Oxygen-18	Determine fresh water sources	100 ml	Rinse, fill and cap 100 ml glass bottles Rinse and fill a 250 – 500 ml glass stoppered bottle, insert glass	None	Room temperature
SF6, CFCs	Age information; Calculation of anthropogenic CO2; Water mass tracer	1-2 liters	stopper, place the bottle in a jar and fill the jar with sample water Flush a 50 ml copper tube with the sample and crimp the ends of	None	Refrigerated at a temperature of 0-2° C
Helium isotopes	Age information; Water mass tracer	50 ml	the tube with the water flowing. Rinse the crimped ends with fresh water. Fill a 500 ml bottle	None	Room temperature
Tritium	Age information; Water mass tracer	500 ml	without rinsing and cap.	None	Room temperature
Iodine-129	Circulation time of Atlantic water	1 liter	Rinse, fill and cap a 1- liter plastic bottle	None	Room temperature

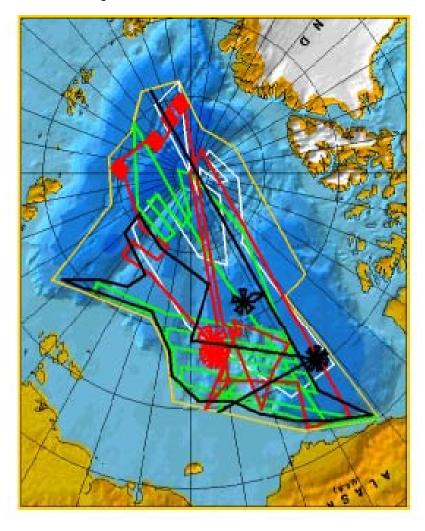
Problems of spatial consistency for calibrating autonomous sensors

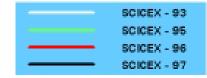
Water sampling

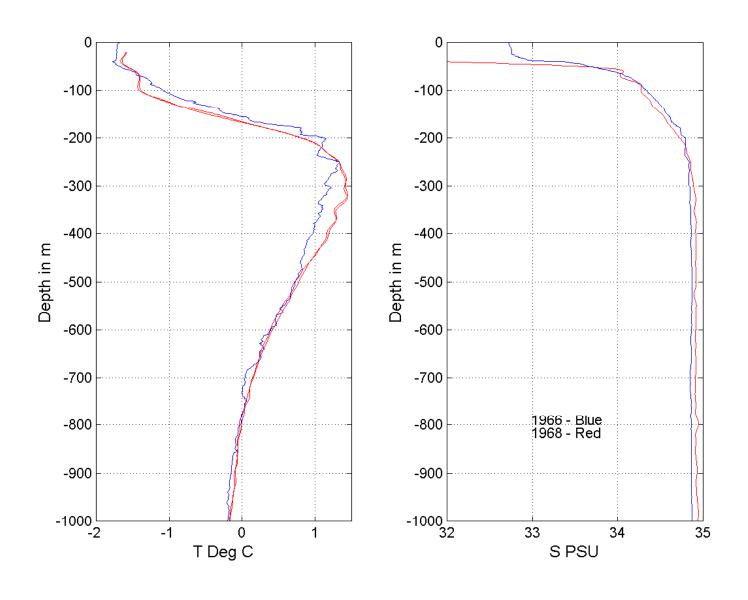

Torpedo room lab.


On-board sample processing


September sea ice extent


Chl a along Marginal ice zone along 170°W (Sambrotto and Mace, 2000)


SCICEX operational region


Composite 1993-197

COMPOSITE SCICEX TRACKS

Characteristic T, S profiles near the North Pole

Old LDEO SCICEX page

SCICEX (Scientific Ice Expeditions)

Collaboration between the US Navy and civilian scientists for environmental research in the Arctic

SCICEX is a 5 year program (1995-1999) in which the Navy has made available a Sturgeon-class, nuclear powered, attack submarine for unclassified science cruises to the Arctic Ocean. Beginning with a test cruise in 1993, civilian scientists together with Navy personnel have collected a variety of information on the geology, physics, chemistry and biology of this critical region. The unmatched mobility of submarines in ice covered oceans has allowed data to be collected from over 100,000 miles of shiptrack in the Arctic providing samples from some regions that have never before been visited. The purpose of this page is twofold; 1) to make public information about the program and some of its accomplishments; and 2) to provide for exchange of data collected during the program by the scientist involved.

(The operating area for the program and the shiptracks for the 1993, 1995, 1996 and 1997 cruises are shown in the figure below.)

SCICEX - 93 SCICEX - 95 SCICEX - 96

SCICEX - 97

Recent additions to page Program Information: SCICEX Science Working Group SCICEX Publications SCAMP Seafloor Mapping And Characterization Pods SCICEX 2000 Workshop SCICEX Participant List Summaries of project abstracts Cruise Info. SCICEX/93 USS Pargo SCICEX/95 USS Cavalla SCICEX/96 USS Pogy SCICEX/97 USS Archerfish SCICEX/98 USS Hawkbill SCICEX/99 USS Hawkbill COMPOSITE SCICEX TRACKS Data

Recent Results

Advantages of a content management based solution

- Easier to manage & change dynamic content
- Do not need web designer for basic functionality
- ◆Tools to control access; can create sub-pages for committees, working groups, etc.
- ◆LDEO group has 4+ yr. experience with this system

Proposal to: NSF/ ONR:

Web Functionality for SCICEX: Phase 1 - Collaboration Support and Preliminary Data Organization

Pls: Raymond Sambrotto (<u>sambrott@ldeo.columbia.edu</u>); Dale Chayes (chayes@ldeo.columbia.edu)
Lamont-Doherty Earth Observatory of Columbia University
61 Rt. 9W; Palisades, NY 10964

Duration: 3 years; Start: May 1, 2008

Cost: \$10,407; 10,812; 11,238 (\$32,456 total)

Overall Objectives:

- Implement a coordinated set of web-based tools to facilitate the work of the SCICEX science advisory committee (SAC), operational Navy and funding agencies.
- Provide a front end Web presence for the SCICEX program that includes public access to existing SCICEX related assets and community interaction on a committee-directed basis.
- Work with NSIDC to develop the data archive in a stepwise fashion.

Approach:

- i. A web-based collaboration environment for the SCICEX SAC based on the open source Plone content management system (www.plone.org) that includes:
- Password protected (non-public) work areas for the Science Advisory Committee and other working groups as appropriate.
- Email list servers for SAC and other working groups.
- Management of list servers and user access listt.
- •Training and advice to the SAC on the use of the collaboration environment and the tools available.
- ii. A content management system for public access and interaction that includes:
- SCICEX program information.
- SCICEX Outreach and Community Awareness opportunities.
- Links to existing SCICEX data.
- RSS (Real Simple Syndication) service for public content.
- A public list server for SCICEX news.
- Migration of existing SCICEX content at Lamont & elsewhere to the new server.

- iii. Administrative support for the new web site and it's associated list servers including:
- Web site, server, hardware maintenance and security patches and updates as necessary.
- Automatic checking for broken links and (manual) repair.
- User administration and assistance for work areas.
- Management of email list server(s).
- Limited technical assistance with adding new content (data, SCICEX bibliography, etc.).
- iv. Organization of existing SCICEX data and resources to make them more readily available. This is not data management but we will integrate our efforts with those of NSIDC.

- v. Plan for potential future enhancements to the SCICEX web resources in collaboration with NSIDC that may include:
- Development of an index of SCICEX data still under proprietary hold.
- Ingest existing data into the Lamont Marine Geosciences Data System (MGDS).
- Creation and serving of GIS shape files for use in other applications.
- Implementation of Web Feature Services (WFS), Web Map Services (WMS), and Web Coverage Services (WCS) in the MGDS infrastructure for SCICEX data.
- Implement access to SCICEX data through a web-based GIS similar to the current shore-side Healy mapserver that is based on the Minnesota Mapserver.
- Addition of new content as it becomes available.

3 Personnel and Budget Justification:

Raymond Sambrotto is a Doherty Research Scientist at Lamont-Doherty (N/C).

Dale Chayes is a Lamont Research Engineer in the Instrument Lab at LDEO (0.25 mos./ yr.).

Bob Arko is a Lead Systems Analyst/Programmer at LDEO. (0.25 mos./ yr.).

One round trip to Washington DC is budgeted in order to provide a short tutorial for the committee members on the use of the collaboration environment and to review community needs. Small amounts are budgeted to cover materials and supplies (such as back up media), communications, shipping and support costs.

Plone features

 Inline editing Working Copy support Link and reference integrity checking Automatic locking and unlocking Easy collaboration and sharing Versioning, history and reverting content Upgraded visual HTML editor Powerful workflow capabilities Flexible authentication back-end Full-text indexing of Word and PDF documents Collections Presentation mode for content Support for the search engine Sitemap protocol Support for multiple mark-up formats Wiki support Automatic previous/next navigation Rules engine for content Auto-generated tables of contents Portlets engine Professional support, development, hosting & training 	 Live search Outstanding multilingual content management Time-based publishing Human-readable URLs Easy-to-use, powerful graphical page editor Flexible navigation and always-updated site maps Resource compression Powerful caching proxy integration Drag and drop reordering of content XML exports of site configurations Localized workflow configuration Adjustable templates on content Powerful standard content types Content is automatically formatted for printing Standards-compliant XHTML and CSS Accessibility compliant Pervasive RSS feed support Automatic image scaling and thumbnail generation Rich ecosystem of free add-on products Cross-platform Comment capabilities on any content Microformat support Simple installer packages for multiple platforms WebDAV and FTP support In-context editing "Hot backup" support Cut/copy/paste operations on content