

OBJECTIVES

 Re-invigorate the SCICEX Science Advisory Committee

 Maximize the contribution of SCICEX in understanding the Arctic Ocean processes and their role in the Earth's climate system

AGENDA

Setting the Stage

- SAC: Role & responsibilities
- History of SCICEX: Scientific contributions
- SCICEX Today: Current assets and capabilities
- SCICEX Drivers:
 - Contributing perspectives
 - Discussion of intersecting points between current assets and capabilities, agency-level drivers and scientific needs

Getting Down to Business

- Defining key activities
 - Guidance for SCICEX cruises of opportunity
 - Communicating with science community
 - Others
- Moving ahead:
 - Priority tasks & timeline
 - Assignments

SCICEX Phase 2 MOA: Signed April 2000

Goals

- Dual use of submarines
- Support objectives of civilian and military communities
- Data collected under agreement made publicly available as soon as possible

SCICEX Phase 2 MOA

Science Accommodation Missions

- Data collection during classified missions
- High priority environmental data
- Concentration on baseline data collection
- Continued monitoring
 - Oceanographic conditions
 - Ice distribution
 - Contaminant concentrations
- Individual proposals for experiments or equipment installation may be entertained
- Scientific riders not anticipated
- Data made widely available

Functioning Bodies

- US Submarine Force
 - Obtain data specified in science plan
- Arctic Submarine Lab (ASL):
 - Submarine Force Arctic Advisor
 - Coordinate operational and technical aspects of each cruise

Functioning Bodies

- Operational Planning Board (OPB):
 ASL (Chair), COMSUBATLAT, COMSUBPAC,
 CNO
- Interagency Committee (IAC):
 ONR (Chair), NSF, ASL, CNO, USARC
- Science Advisory Committee (SAC):
 - IAC Designated Chair, ONR, NSF, ASL
 - 6 non-permanent members from scientific community, 3 each selected by NSF and ONR

Operational Planning Board Coordinate oversight of SCICEX program

- Review proposed research
 - Verify feasibility
 - Limit extent due to operational or safety concerns
- Approve Science Plan

Interagency Committee:

Orchestra definition of Science Plan

- Baseline & one-time data collection
- Establish broad scientific priorities
- Define baseline data
- Request proposals, when appropriate
- Fund research

Science Advisory CommitteeAdvise Interagency Committee

- Periodically review baseline data collection plan
- Recommend modifications
- Evaluate proposals, when necessary

BASELINE DATA MOA: SCICEX Phase 2

General Expectations

- Use of standard equipment and systems
- CTD profiles taken with expendable probes
- CTD from hull-mounted systems
- Bathymetry by installed fathometers
- Ice profile data from upward-looking sonar
- Salinities from water samples
- Supporting non-classified navigational and operational data
- All data stored in national data repository, designated by ONR (currently NSIDC)

January 2002

- Priorities for Opportunity Cruises
 - First: Continue transpolar track over the North Pole
 - Second: Track along margin of the SCICEX Box as close as possible to the Canadian EEZ
 - Marked one time change in priorities
 - Evaluate hypothesis that Arctic sea ice is not thinning but, instead, is accumulating on the Canadian margin
 - Third: Track along the Eurasian margin of the box

March 2005

- Priorities for Opportunity Cruises
 - Central Arctic transect remains top priority
 - Not likely to work on Canadian side of central transect
 - Second priority not likely to be achieved
 - Consider interest in ice thickness surveys, so-called 'rosette' survey
 - Guidance on oceanographic surveys

Spring/Summer 2005

- Guidance on oceanographic surveys
 - Recommendation on SeaBird instrument model number for probe (Smethie)
 - Recommendation on fluorescence sensor (Whitledge)
 - Recommendation on smallest ADCP for useful data considering speed and depth of transit (Muench)
 - Details on the installation of nitrate sensor (Whitledge)
 - Recommendation on optimum water sampling rate (Muench)
 - Establish analytical facility agreement for routine analysis of water samples (Conlon)
 - Developed sample request form for special sampling (Smethie/Brass)

Spring/Summer 2005

- Ice thickness surveys (Richter-Menge)
 - Primary, cross basin transect remains highest priority
 - Need to reconsider specific location
 - Rosette survey most useful if repeated on same piece of ice (complex requirement)
 - Interest in transect line running perpendicular to and across primary line
 - New priority #2?
 - Question remains on the ideal depth
 - Trade off in accuracy vs. coverage

History of SCICEX

Nuclear subs transit Arctic Ocean and collect environmental data

PURPOSE OF SCICEX

Designed to simultaneously sample and map the ice canopy, physical, chemical and biological water properties, seafloor and seabed subsurface

History of SCICEX

- 1993: Proof of concept cruise
- 1994: MOA signed for dedicated cruises
- 6 dedicated cruises: 1995-1999
- 1998: US Navy announces end of dedicated cruises
 - Reduction in submarine force
- 2000: MOA signed for accommodation cruises
- 4 accommodation cruises: 2000, '01, '03, '05
- All usable data has been released

Data Collection

Dedicated Cruises

- All:
 - Topsounding
 - XCTD
 - Single-beam bottom sounding
 - Water sampling
 - Hull-mounted CTD
- Most: ADCP
- Two or three: Zero Angle Photon Spectrometer (ZAPS), measured dissolved organics
- Last 2: SCAMP

Data Collection

Accommodation Cruises

- -AII
 - Topsounding
 - Single-beam bottom sounding
 - Hull-mounted CTD
- All but last: XCTDs
- Last 2: Some limited water sampling

History of SCICEX Cruise Tracks (1993-1999)

History of SCICEX Scientific Contributions

Highlights

- Signs of recent volcanic eruptions
- Evidence for ~ kilometer-thick ice shelf covering much of Arctic Ocean during Pleistocene glacial maximum
- Pronounced changes in Arctic Ocean hydrography during 1990s
- Detailed description of physical and chemical properties within an eddy system
- Distribution and trends in ice thickness
- 54 publications listed in Edwards and Coakley (2003)

Arctic Geology

M. Edwards

Active volcano on Gakkel Ridge

Evidence of glacial erosion and iceberg Scouring on Chukchi Borderland

M. Edwards

Arctic Oceanography Chlorophyll concentrations

Transport across shelf occurs in confined plumes, apparently related to canyons or other depressions in the shelf topography

Arctic Oceanography Upper Ocean Circulation

SCICEX-99 Cruise

- 151 XCTDs launched
- 91% success rate
- 22,750 km of cruise track
- Typical speed 14 kts
- Duration 42 days

Arctic Ocean Temperature

Across-Basin Transects

Initial warming over Arctic MOR

- Warming over Lomonosov R.
- Warming over the Alpha R. and North Wind R.
- Continued warming at AMOR
- Continued warming in the CB, MB, and AB
- Cooling over the AMOR
- Ridges vs. interior of basins (circulation vs. mixing)

Arctic Ocean Salinity

Across-Basin Transects

- •Large-scale Atlantic/Pacific salinity difference
- •Reduction of fresh water in the Amundsen B.
- Increase of FW in the nearsurface of the CB
- Increase of FW in the Makarov and Amundsen B.

Arctic Oceanography Arctic Cold Halocline

Variability in strength of the CHL

- Profiles from a single location in the Amundsen Basin
- S at 80m is a measure of stratification
- High S at 80m = weak stratification (S at 200 m is constant)

SEA ICE DRAFT

Changes: 1950s-1970s to 1990s

Evidence that Arctic sea ice cover is thinning

SEA ICE DRAFT

Interannual Variation

Multiple regression of all data at NSIDC

SEA ICE DRAFT Spatial Distribution

SUMMARY

- Unique program
- Key insights on characteristics of Arctic Ocean
 - Seafloor
 - Ocean
 - Ice cover
- Region remains of high interest
- Bellwether of climate change
 - Possible increase in operational activities
 - Strong motivation to maximize utilization of SCICEX agreement