

ClimoBase: Rouse Canadian Surface Observations of Weather, Climate, and Hydrological Variables, 1984-1998, Version 1

# USER GUIDE

#### How to Cite These Data

As a condition of using these data, you must include a citation:

National Snow and Ice Data Center. 2014. *ClimoBase: Rouse Canadian Surface Observations of Weather, Climate, and Hydrological Variables, 1984-1998, Version 1.* Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5FX77CH. [Date Accessed].

FOR QUESTIONS ABOUT THESE DATA, CONTACT NSIDC@NSIDC.ORG

FOR CURRENT INFORMATION, VISIT https://nsidc.org/data/G10008



# **TABLE OF CONTENTS**

| 1 | C   | OVERVIEW                  |                                 |   |  |  |  |  |
|---|-----|---------------------------|---------------------------------|---|--|--|--|--|
| 2 | Ľ   | DETAILED DATA DESCRIPTION |                                 |   |  |  |  |  |
|   | 2.1 | Sum                       | mary                            | 3 |  |  |  |  |
|   | 2   | 2.1.1                     | Data Files                      | 3 |  |  |  |  |
|   | 2   | 2.1.2                     | Readme Files                    | 3 |  |  |  |  |
|   | 2.2 | Form                      | nat                             | 4 |  |  |  |  |
|   | 2   | 2.2.1                     | Data Files                      | 4 |  |  |  |  |
|   | 2   | 2.2.2                     | Readme Files                    | 4 |  |  |  |  |
| 3 | F   | FILE NA                   | AMING CONVENTION                | 5 |  |  |  |  |
|   | 3   | 3.1.1                     | Data Files                      | 5 |  |  |  |  |
|   | 3   | 3.1.2                     | Readme Files                    | 7 |  |  |  |  |
|   | 3.2 | File a                    | and Directory Structure         | 8 |  |  |  |  |
|   | 3.3 | File S                    | Size                            | 9 |  |  |  |  |
|   | 3.4 | Spati                     | al Coverage and Resolution      | 9 |  |  |  |  |
|   | 3.5 | Temp                      | poral Coverage and Resolution   |   |  |  |  |  |
|   | 3.6 | Para                      | meters                          |   |  |  |  |  |
|   | 3   | 3.6.1                     | Parameter Description           |   |  |  |  |  |
| 4 | L   |                           | ACQUISITION AND PROCESSING      |   |  |  |  |  |
|   | 4.1 | Sens                      | or or Instrument Description    |   |  |  |  |  |
| ~ | 4.2 | Quali                     |                                 |   |  |  |  |  |
| Э |     | XEFER                     | LENCES AND RELATED PUBLICATIONS |   |  |  |  |  |
| e | 5.1 |                           | LEG PUBLICATIONS                |   |  |  |  |  |
| 0 |     |                           |                                 |   |  |  |  |  |
| 1 | L   | JOCON                     |                                 |   |  |  |  |  |
|   | 7.1 | Docu                      | Iment Authors                   |   |  |  |  |  |
|   | 1.2 | Docu                      | Imeni Creation Date             |   |  |  |  |  |
|   | 1.3 | Date                      | Lasi Opualeu                    |   |  |  |  |  |

# 1 OVERVIEW

ClimoBase is a collection of surface climate measurements taken in Northern Canada by Dr. Wayne Rouse between 1984 and 1998 in three locations: Churchill, Manitoba; Marantz Lake, Manitoba; and Inuvik, Northwest Territories. ClimoBase was created to provide a central repository for Dr. Wayne Rouse's raw field data. Dr. Rouse is now Professor Emeritus at McMaster University, Hamilton, Ontario. Dr. Rouse was considered by the Canadian Association of Geographers (CAG) to have "pioneered field research on the evaporation of high latitude sites, including woodlands, tundra, wetland and lake surfaces" (1998). He received the 1998 CAG Award for Scholarly Distinction in Geography. In 2001, Dr. Roger Barry, the Director of NSIDC at the time, received a copy of ClimoBase for NSIDC. We are publishing these data now as part of an effort to help assure the preservation of small data collections that are not part of a larger funded program, and that may receive wider use through documentation and distribution on line.

# 2 DETAILED DATA DESCRIPTION

These data are surface-climate measurements from 1984-1998, including solar time, wind speed, wind direction, dry-bulb, wet-bulb, and vapor pressure in 24 sites focused on three Northern Canada locations: Churchill, Manitoba, Marantz Lake, Manitoba, and Inuvik, Northwest Territories. The sites were chosen to include a variety of terrains in the study and were categorized into the following groups:

- Sedge fen wetland
- Willow-birch wetland
- Lichen-heath
- Bedrock boulders/Heath
- Spruce- tamarack forest
- Tundra lake
- Creek
- Various (for example, a basin with different terrains: sedge, willow, lichen-heath, forest, etc.)
- Sparse vegetation (short grass/sedge, heath spp.)
- Coastal marsh (tall grass, sandy soils)

The measurements were taken in increments ranging from seasonally to every 15 minutes. In all, 177 different variables were measured and recorded. The data are valuable due to their unique and consistent nature.

ClimoBase was created to provide a central repository for Dr. Wayne Rouse's raw field data. Dr. Rouse is now Professor Emeritus at McMaster University, Hamilton, Ontario. Dr. Rouse was considered by the Canadian Association of Geographers (CAG) to have "pioneered field research on the evaporation of high latitude sites, including woodlands, tundra, wetland and lake surfaces" (1998). He received the 1998 CAG Award for Scholarly Distinction in Geography. In 2001, Dr. Roger Barry, the Director of NSIDC at the time, received a copy of ClimoBase for NSIDC. We are publishing these data now as part of an effort to help assure the preservation of small data collections that are not part of a larger funded program, and that may receive wider use through documentation and distribution on line.

# 2.1 Summary

ClimoBase was compiled to serve as a central repository for the data collected through the research of Dr. Wayne Rouse in Northern Canada from 1984 through 1998. The collection includes 7007 data files that list surface climate measurements collected at regular intervals, along with a user manual and README files that detail data attributes and measurement techniques.

Note: The ClimoBase Users Manual (Boudreau, 1999) contains some outdated information. It describes these data as they were in 1999 as well as how to install the original database from the data files. This newer version of the data have been reformatted into comma separated value (.csv) files for NSIDC so that they are easy to read in Excel or any text editor, so sections 2, 4, 6, and 7 of the user manual do not pertain to this data set. However, those sections do still contain valuable information about the provenance of the data. Sections 3 and 5 of the ClimoBase Users Manual do contain pertinent information and are referenced often throughout this document as a place to find specifics about site location, temporal resolution, and measurements taken.

### 2.1.1 Data Files

There are two types of data files: daily and seasonal. Daily data files mostly contain half-hourly data, however, hourly and 15-minute data also exist for certain data sets. The seasonal data files contain discrete daily values, usually manually measured once a day (for example: water table elevation, rain gauge amounts, frost table depth, etc.).

### 2.1.2 Readme Files

There are two different types of readme files: study site overviews and data parameter descriptions. The study site overview Readme files describe the geographical location of the sites, the measurements taken, the instruments used, and the time frame that the measurements took place; there is one of these files for each site. The data parameter description Readme files describe the attributes and list the headings of each column of the data files. There is one data parameter description Readme file for each year that measurements were taken at a site. This means that all data files from a particular year and site share one common description file. Note: the data parameter description Readme files are called "control" files in the ClimoBase Users Manual (Boudreau, 1999).

# 2.2 Format

## 2.2.1 Data Files

The data files are in comma separated value (.csv) format. Both the daily and seasonal data files contain columns of data by parameter separated by a comma with no headers. A data parameter descriptions Readme file describes the contents of the columns. A data file can have up to 110 different parameters. A null value means that the original value was deemed erroneous or could not be determined. See the 4 section below of this document for further information on the processing of the data.

### 2.2.2 Readme Files

The study site overviews and data parameter descriptions Readme files are in text format (.txt). The study site overviews are provided in paragraph format providing a written description of the sites. The data parameter description files contain headers describing the data like year and number of parameters as well as columns of a variety of parameter codes which correspond to the parameters in the related data files. The top portion of the description Readme files describe the daily data files and the lower portion of the files, after the "DAY File Parameters" line, describe the seasonal files. A parameter code has three parts:

#### VVVLLUU

Where:

| Variable | Description                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| VVV      | 3-digit variable code that identifies the parameter in the specified column of the data files. See Table 5 for the codes and variables. |
| LL       | 2-digit level code. When value is greater than zero, a multi-level variable is assumed.                                                 |
| UU       | 2-digit unit code identifying the units of the parameter identified with the variable code. See Table 6 for the units and codes.        |

Table 1. Data Parameter Description Readme File Parameter Code Description

Example: In the parameter code 1370501, 137 corresponds to dry-bulb temperature, 05 is the Level, and 01 is the Unit Code, which corresponds to units of °C.

For complete details on how to interpret the data parameter description files with examples, see section 3.3.2 and 3.3.3 of the ClimoBase Users Manual (Boudreau, 1999).

# 3 FILE NAMING CONVENTION

### 3.1.1 Data Files

The data files are named according to the following convention:

GGSSTTYY.ddd.csv

Where:

| Variable | Description            |                                                     |            |                           |  |  |  |  |
|----------|------------------------|-----------------------------------------------------|------------|---------------------------|--|--|--|--|
| GG       | 2-digit Geo            | ographic Location Code                              |            |                           |  |  |  |  |
|          | GG Code                | e Location                                          |            |                           |  |  |  |  |
|          | 01                     | Churchill, MB                                       |            |                           |  |  |  |  |
|          | 02                     | Marantz Lake, MB (including Waterho                 | le Lake)   |                           |  |  |  |  |
|          | 03                     | Inuvik, NWT                                         |            |                           |  |  |  |  |
| SS       | 2-digit Site Name Code |                                                     |            |                           |  |  |  |  |
|          | SS<br>Code             | Site Name (unofficial)                              | SS<br>Code | Site Name<br>(unofficial) |  |  |  |  |
|          | 01                     | Sedge, Site4 (1987)                                 | 13         | Site2 (1987)              |  |  |  |  |
|          | 02                     | Willow                                              | 14         | Site3 (1987)              |  |  |  |  |
|          | 03                     | Beach, Ridge                                        | 15         | Eastern Creek<br>Basin    |  |  |  |  |
|          | 04                     | Rocky                                               | 16         | Pfrost                    |  |  |  |  |
|          | 05                     | Twin Lakes (note: no files exist with this code)    | 17         | Eddy                      |  |  |  |  |
|          | 06                     | Golf Lake                                           | 18         | LowTVC (lowland)          |  |  |  |  |
|          | 07                     | reserved (note: no files exist with this code)      | 19         | Mobile Qg                 |  |  |  |  |
|          | 08                     | RCT-1                                               | 20         | Main (1984,1985)          |  |  |  |  |
|          | 09                     | RCT-2                                               | 21         | Marantz                   |  |  |  |  |
|          | 10                     | Airport (AES) (note: no files exist with this code) | 22         | UpTVC (upland)            |  |  |  |  |
|          | 11                     | Eastern Creek                                       | 23         | Rodney                    |  |  |  |  |
|          | 12                     | Site1 (1987)                                        | 24         | Waterhole Lake            |  |  |  |  |

#### Table 2. File Naming Convention Description

| Variable        | Descriptio             | on                                                                               |  |  |  |  |
|-----------------|------------------------|----------------------------------------------------------------------------------|--|--|--|--|
| TT              | 2-digit Ter            | rrain Type Code                                                                  |  |  |  |  |
|                 | Terrain Type           |                                                                                  |  |  |  |  |
|                 | 01                     | Sedge fen wetland                                                                |  |  |  |  |
|                 | 02                     | Willow-birch wetland                                                             |  |  |  |  |
| 03 Lichen-heath |                        |                                                                                  |  |  |  |  |
|                 | 04                     | Bedrock boulders/Heath                                                           |  |  |  |  |
|                 | Spruce-tamarack forest |                                                                                  |  |  |  |  |
|                 | Tundra lake            |                                                                                  |  |  |  |  |
|                 | Creek                  |                                                                                  |  |  |  |  |
|                 | 08                     | Various (i.e. a mosaic, e.g. a basin: sedge, willow, lichen-heath, forest, etc.) |  |  |  |  |
|                 | 09                     | Sparse vegetation (short grass/sedge, heath spp.)                                |  |  |  |  |
|                 | 10                     | Coastal marsh (tall grass, sandy soils)                                          |  |  |  |  |
| YY              | ır                     |                                                                                  |  |  |  |  |
| ddd             | 3-digit day            | of year for daily files and "DAY" for seasonal files                             |  |  |  |  |
| .csv            | Indicates t            | hat this file is in comma separated value format                                 |  |  |  |  |
| .txt            | Indicates t            | hat this file is in text format                                                  |  |  |  |  |

#### Example

01080494.145.csv which translates to Churchill, MB; site RCT-1; terrain type bedrock boulders/heath; in 1994 on day 145.

### 3.1.2 Readme Files

#### **Study Site Overview Readme Files**

The overview readme files are named according to the following convention:

#### GGSSTT.README.txt

See Table 2 for file naming convention code descriptions.

#### **Data Parameter Description Readme Files**

The parameter description readme files are named according to the following convention:

#### GGSSTTYY.INI.README.txt

See Table 2 for file naming convention code descriptions.

## 3.2 File and Directory Structure

Data are available via HTTPS: https://noaadata.apps.nsidc.org/NOAA/G10008/. Within this top level directory is a directory for each research site, named with a site code, and within the research-site directories is a Data directory and a ReadMe directory that contain the data and the Readme files, respectively. See Table 3 and Figure 1 for further details.



Figure 1. HTTPS Directory Structure

| Directory           | Description                                                                                                                                                                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGSSTT              | 6-digit research site code directory name. See Table 2 for the code values.                                                                                                                                                                                                 |
| GGSSTT/Data         | Contains the data files for each year that data was taken at that research site.                                                                                                                                                                                            |
| GGSSTT/ReadMe       | Contains the Readme files that describe the data files.                                                                                                                                                                                                                     |
| ClimoBase_v6_README | Contains 2 Readme files. One that decodes the headers of the data files (HEADERS.prn.README.txt) and the other describes the units of the headers (UNITS.prn.README.txt). This information is also consolidated for easy reference in Table 5 and Table 6 of this document. |

Table 3. Directory Structure Description and Contents

## 3.3 File Size

The data files range in size from .5 KB to 32 KB and the Readme files range in size from 1 KB to 19 KB. The total volume of the data files and Readme files together is approximately 31 MB.

# 3.4 Spatial Coverage and Resolution

These data were gathered from 24 research sites in 3 locations in Northern Canada: Churchill, Manitoba; Marantz Lake, Manitoba; and Inuvik, Northwest Territories.

The 24 locations lie within this approximate bounding box:

Southernmost Latitude: 58.13° N Northernmost Latitude: 68.74° N Westernmost Longitude: 133.51° W Easternmost Longitude: 93.82° W

Specific latitude and longitude of each site, if known, is given in Table 4.

| Site Name<br>(unofficial) | Location         | Lat/Lon                    | Description                                                                                                                                                                                                                                                                                                | Data Collection Dates                                                                                                                                                                                                                                                                                                         | Type of Data<br>Collected                                                                           |
|---------------------------|------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Sedge, Site4 (1987)       | Churchill,<br>MB | 58° 40'<br>N, 93°<br>49' W | A sedge-dominated fen wetland located<br>approximately 30 km ESE of Churchill,<br>MB, and 12 km due south of the coast<br>of Hudson Bay. The Sedge and Site4<br>sites are at the same location. Prior to<br>1989, the site was referred to as Site4<br>after that it was referred to as the<br>Sedge site. | 1 June to 13 August<br>1987<br>19 June to 1 September<br>1989<br>19 June to 22 August<br>1990<br>16 June to 24 August<br>1991<br>8 June to 3 September<br>1992<br>14 June to 24 August<br>1993<br>6 June to 26 August<br>1994<br>12 June to 25 August<br>1995<br>4 June to 25 August<br>1996<br>4 June to 6 September<br>1997 | soil temperature,<br>temperature and<br>humidity profiles, soil<br>heat flux, net wave<br>radiation |
| Willow                    | Churchill,<br>MB | 58° 46'<br>N, 93°<br>53' W | Dwarf willow-birch forest located along<br>a portion of the coast of Hudson Bay,<br>20 km east of Churchill, MB.                                                                                                                                                                                           | 19 June to 24 August<br>1990<br>15 June to 23 August<br>1991                                                                                                                                                                                                                                                                  | soil temperature,<br>temperature and<br>humidity profiles, soil<br>heat flux, soil<br>moisture      |

Table 4. Site Descriptions and Dates

| Site Name<br>(unofficial) | Location         | Lat/Lon                    | Description                                                                                                                                                                                                                                 | Data Collection Dates                                        | Type of Data<br>Collected                                                                                                |
|---------------------------|------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Beach, Ridge              | Churchill,<br>MB | 58° 44'<br>N, 93°<br>53' W | Upland lichen-heath terrain, 20 km east<br>of Churchill, MB and 800 m south of<br>Bird Cove, located on a raised beach<br>complex and was referred to as the<br>Ridge site in 1991 and the Beach site in<br>1996.                           | 21 June to 23 August<br>1991<br>4 June to 23 August<br>1996  | soil temperature,<br>temperature and<br>humidity profiles, soil<br>heat flux, net wave<br>radiation                      |
| Rocky                     | Churchill,<br>MB | 58° 47'<br>N, 93°<br>58' W | Exposed bedrock and lichen-heath<br>mats 13 km east of Churchill, MB<br>located on the high bedrock bluffs near<br>the coast of Hudson Bay, north of<br>"Launch road" and 200 m NE of an old<br>Department of National Defense<br>building. | 27 June to 24 August<br>1995                                 | soil temperature,<br>temperature and<br>humidity profiles, soil<br>heat flux, net wave<br>radiation                      |
| Twin Lakes                | Churchill,<br>MB | 58° 37'<br>N, 93°<br>49' W | The site was a mixed conifer stand<br>covering ~3500 ha surrounding two<br>small lakes (locally known as the Twin<br>Lakes). It is situated -40 km to the east<br>of Churchill and 15 km south of the<br>coast of Hudson Bay                | No files were found that contain data from this site.        |                                                                                                                          |
| Golf Lake                 | Churchill,<br>MB | 58° 45'<br>N, 93°<br>58' W | Medium-sized tundra lake<br>approximately 15 km east of Churchill,<br>MB.                                                                                                                                                                   | 21 June to 24 August<br>1991<br>17 June to 24 August<br>1995 | Net and reflected<br>solar radiation and<br>water surface<br>temperature, soil heat<br>flux of the bottom of<br>the lake |

| Site Name<br>(unofficial) | Location         | Lat/Lon                    | Description                                                                                                                                                                                                                                           | Data Collection Dates                                                                                                                                                        | Type of Data<br>Collected                                                |
|---------------------------|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| RCT-1                     | Churchill,<br>MB | Unknown                    | Located 400 m east of the Churchill<br>airport control tower situated in solid<br>Ordovician sandstone                                                                                                                                                | 25 May to 31 December<br>1994<br>1 January to 31<br>December 1995<br>1 January to 31<br>December 1996<br>1 January to 31<br>December 1997<br>1 January to 28 October<br>1998 | permafrost<br>temperatures, air<br>temperature, and<br>relative humidity |
| RCT-2                     | Churchill,<br>MB | Unknown                    | sedge-dominated wetland area with<br>hummock and hollow topography<br>located approximately 700 m due west<br>of the midpoint of Churchill's longest<br>(paved) runway, just south of a gravel<br>road along an abandoned railway spur                | <ul> <li>15 June to 31 December</li> <li>1996</li> <li>1 January to 31</li> <li>December 1997</li> <li>1 January to 31</li> <li>December 1998</li> </ul>                     | permafrost<br>temperature and soil<br>heat flux                          |
| Airport (AES)             | Churchill,<br>MB | 58° 44'<br>N, 94°<br>04' W | Churchill Airport                                                                                                                                                                                                                                     | No files were found that contain data from this site.                                                                                                                        |                                                                          |
| Eastern Creek             | Churchill,<br>MB | Unknown                    | Three stream gauging stations were set<br>up; two at the Eastern Creek sources<br>(Willow Creek and Upper Eastern<br>Creek), and one near the mouth of the<br>creek where it flows under Launch<br>Road and into Hudson Bay (Lower<br>Eastern Creek). | 12 June to 25 August<br>1991<br>11 June to 26 August<br>1992<br>17 June to 26 August<br>1993<br>16 June to 26 August<br>1994                                                 | water velocity and<br>water depth                                        |

| Site Name<br>(unofficial) | Location         | Lat/Lon                    | Description                                                                                                                                             | Data Collection Dates                                                                                                                                                                     | Type of Data<br>Collected                    |
|---------------------------|------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Site1 (1987)              | Churchill,<br>MB | Unknown                    | Located in a coastal marsh area along<br>the coast of Hudson Bay, near Bird<br>Cove. The predominant vegetation was<br>tall grasses, sedges, and reeds. | 1 June to 15 August<br>1987                                                                                                                                                               | temperature (air and soil)                   |
| Site2 (1987)              | Churchill,<br>MB | Unknown                    | Located in a sedge meadow several<br>kilometers inland from the coast of<br>Hudson Bay.                                                                 | 1 June to 16 August<br>1987                                                                                                                                                               | temperature (air and soil)                   |
| Site3 (1987)              | Churchill,<br>MB | Unknown                    | Located in a sedge meadow 10 km inland from the coast of Hudson Bay.                                                                                    | 1 June to 13 August<br>1987                                                                                                                                                               | temperature (air and soil)                   |
| Eastern Creek<br>Basin    | Churchill,<br>MB | 58° 45'<br>N, 93°<br>57' W | Network of 18 stations along two<br>transects that ran through the Eastern<br>Creek drainage basin.                                                     | <ul> <li>9 June to 24 August</li> <li>1991</li> <li>11 June to 26 August</li> <li>1992</li> <li>20 June to 26 August</li> <li>1993</li> <li>14 June to 26 August</li> <li>1994</li> </ul> | water table location<br>and rainfall amounts |
| Pfrost                    | Churchill,<br>MB | Unknown                    | Permafrost site installed at the main<br>Sedge site in Churchill                                                                                        | 30 August to 31<br>December 1995<br>1 January to 26<br>December 1996                                                                                                                      | Permafrost<br>temperature                    |
| Eddy                      | Churchill,<br>MB | Unknown                    | Eddy site setup over wet tundra, 100 m<br>north of the present Sedge site in<br>Churchill.                                                              | 16 September to 16<br>October 1995<br>2 January to 31<br>December 1996<br>1 January to 12<br>February 1997                                                                                | soil heat flux                               |

| Site Name<br>(unofficial) | Location         | Lat/Lon                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                          | Data Collection Dates                                                                                                                                    | Type of Data<br>Collected                                                                           |
|---------------------------|------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| LowTVC (lowland)          | lnuvik,<br>NWT   | 68° 44'<br>13" N,<br>133° 30'<br>21" W | Wetland in Trail Valley Creek,<br>approximately 75 km NNE of Inuvik,<br>NWT                                                                                                                                                                                                                                                                                                                                                          | 22 May to 31 December<br>1996<br>1 January to 31<br>December 1997<br>1 January to 17 August<br>1998                                                      | soil heat flux,<br>radiation, temperature<br>(air and surface)                                      |
| Mobile Qg                 | Churchill,<br>MB | Unknown                                | Network of four sites with different<br>terrain types (sedge, forest, lichen-<br>heath, and willow-birch) in the Churchill,<br>MB area.<br>Sedge: located near the main Sedge<br>site, north of the Twin Lakes forest<br>Forest: located near the Twin Lakes<br>site<br>Lichen: located in an extensive area of<br>lichen mats on a raised beach ridge,<br>400 m north of Lindy Lake<br>Willow: located near the main Willow<br>site | Sedge: 19 June to 6<br>July 1994<br>Forrest: 9 July to 25 July<br>1994<br>Lichen: 26 July to 10<br>August 1994<br>Willow: 10 August to 26<br>August 1994 | soil heat flux                                                                                      |
| Main (1984,1985)          | Churchill,<br>MB | 58° 45'<br>N, 93°<br>58' W             | Dry, well drained and sparsely<br>vegetated terrain located 15 km east of<br>Churchill, MB on a sandy raised beach<br>plateau, 500 m north of Golf Lake and<br>300 m south of Launch road.                                                                                                                                                                                                                                           | 14 May to 21 August<br>1984<br>26 April to 19<br>September 1985                                                                                          | soil temperature,<br>temperature and<br>humidity profiles, soil<br>heat flux, net wave<br>radiation |

| Site Name<br>(unofficial) | Location                     | Lat/Lon                                | Description                                                                                                                                                              | Data Collection Dates                                              | Type of Data<br>Collected                                                                           |
|---------------------------|------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Marantz                   | Marantz 5<br>Lake, MB 9<br>W |                                        | A peat plateau (approximately 2 m<br>deep), covered by thick lichen mats<br>near an abandoned military installation<br>located near Marantz Lake in Northern<br>Manitoba | 14 May to 18 August<br>1984<br>4 June to 15 September<br>1985      | soil temperature,<br>temperature and<br>humidity profiles, soil<br>heat flux, net wave<br>radiation |
| UpTVC (upland)            | lnuvik,<br>NWT               | 68° 44'<br>13" N,<br>133° 30'<br>19" W | Upland area located on the north side<br>of Trail Valley Creek, approximately 75<br>km NNE of Inuvik, NWT                                                                | 20 May to 31 December<br>1997<br>1 January to 17 August<br>1998    | soil heat flux,<br>radiation, temperature<br>(air and surface)                                      |
| Rodney                    | Churchill,<br>MB             | Unknown                                | Permafrost site located on a raised<br>beach ridge 1 km due south of Bird<br>Cove, Churchill, MB                                                                         | 10 June to 31 December<br>1996<br>1 January to 12<br>February 1997 | permafrost<br>temperature and soil<br>heat flux                                                     |
| Waterhole Lake            | Marantz<br>Lake, MB          | 58° 44'<br>N, 93°<br>49' W             | Medium-sized tundra lake in Northern<br>Manitoba                                                                                                                         | 15 June to 16 August<br>1985                                       | evaporation, net<br>radiation, heat flux,<br>temperature                                            |

# 3.5 Temporal Coverage and Resolution

The various climate measurements were taken between 1984 and 1998, generally in regular intervals ranging from seasonally to every 15 minutes, but usually half hourly, for approximately 75 to 150 consecutive days in each year. The dates that measurements were taken at each site are listed in Table 4. Detailed information of temporal coverage and resolution regarding each site location can be found in the Readme files that accompany the data files as well as in the descriptions of each site in Section 5 of the ClimoBase Users Manual (Boudreau, 1999).

# 3.6 Parameters

177 different parameters dealing with surface-climate measurements are available from this data set including solar time, wind speed, wind direction, soil temperature, soil heat flux, albedo, temperature (air, water, and surface), and vapor pressure. See Table 5 for the complete list of parameters with their descriptions and units.

## 3.6.1 Parameter Description

| Code | Parameter | Description                                                          | Units               |
|------|-----------|----------------------------------------------------------------------|---------------------|
| 001  | ALBEDO    | Albedo (K∱/ K↓)                                                      | unitless            |
| 002  | ALPHA     | Priestley-Taylor alpha coefficient (Qe/Qeq)                          | unitless            |
| 003  | AM32_T    | Reference temperature (for TC's) of AM32 multiplexer                 | °C                  |
| 004  | AM416_T   | Reference temperature (for TC's) of AM416 multiplexer                | °C                  |
| 005  | Autowell  | Depth of water table (negative values=depth below surface)           | mm                  |
| 006  | AVG_MRG   | Average rainfall from several manual rain gauges (E.<br>Creek Basin) | mm                  |
| 007  | BETA      | Bowen ratio (Qh/Qe)                                                  | unitless            |
| 008  | CLD_cov   | Cloud cover as observed at the Churchill Weather Station             | tenths              |
| 009  | CLD_opc   | Cloud opacity as observed at the Churchill Weather Station           | tenths              |
| 010  | CO2       | Mean ambient CO <sub>2</sub> concentration                           | ppm                 |
| 011  | CO2(#)    | Carbon Dioxide concentration at level # (1=bottom)                   | ppm                 |
| 012  | CO2(Humm) | Mean ambient CO <sub>2</sub> concentration 0.10 m above a hummock    | ppm                 |
| 013  | CO2/z     | Mean CO <sub>2</sub> gradient between 0.35 m and 3.2 m               | ppm m <sup>-1</sup> |
| 014  | CO2mV(#)  | Non-linear CO <sub>2</sub> IRGA voltage at level # (1=bottom)        | mV                  |

 Table 5. Parameter Description and Codes

| Code | Parameter | Description                                                                                              | Units                              |
|------|-----------|----------------------------------------------------------------------------------------------------------|------------------------------------|
| 015  | CR10_Batt | Campbell CR10 data logger's battery voltage                                                              | V                                  |
| 016  | CS615per  | Period measured by the CS615 TDR (soil moisture 0 - 20 cm)                                               | ms                                 |
| 017  | DAY       | Day of the month                                                                                         | unitless                           |
| 018  | DEPTH     | Mean depth of Golf Lake (areally weighted)                                                               | m                                  |
| 019  | DIR       | Wind Direction                                                                                           | 0                                  |
| 020  | DIR_SD    | Standard deviation of wind direction                                                                     | 0                                  |
| 021  | DOY       | Day of the year                                                                                          | unitless                           |
| 022  | Dry_GT(#) | Ground temperature at various levels (#) below a dry area                                                | °C                                 |
| 023  | dS        | CO <sub>2</sub> storage term                                                                             | g m <sup>-2</sup> d <sup>-1</sup>  |
| 024  | е         | Ambient vapour pressure at a reference height                                                            | kPa                                |
| 025  | E         | Number of periods (48 or 24 per day) with East winds                                                     | Periods d <sup>-1</sup>            |
| 026  | e(#)      | Vapour pressure at level # (1=bottom)                                                                    | kPa                                |
| 027  | e0        | Estimated surface vapour pressure (from e profile extrapolation)                                         | kPa                                |
| 028  | eCR7(#)   | Vapour pressure as computed by the CR7 logger (1984-85)                                                  | kPa                                |
| 029  | Encl_T    | Insulated IRGA enclosure temperature (@ back of<br>IRGA)                                                 |                                    |
| 030  | Evap      | Evaporation calculated from $Q_e$ and $L_\nu$ (based on Tair)                                            | mm                                 |
| 031  | FAN_Batt  | Voltage of the Q* fan and enclosure heater battery                                                       | V                                  |
| 032  | Fc        | $CO_2$ flux after the Webb correction for $Q_e$ was applied                                              | mg m <sup>-2</sup> s <sup>-1</sup> |
| 033  | Fc_AERO   | CO <sub>2</sub> flux before the Webb corrections (calc. using wind mg profile)                           |                                    |
| 034  | Fc_BREB   | $CO_2$ flux before the Webb corrections (calc. using mg m $K_c$ from $Q_h$ )                             |                                    |
| 035  | Fc_EC     | CO <sub>2</sub> flux (eddy corr.) after the Q <sub>e</sub> Webb correction was mg m <sup>2</sup> applied |                                    |
| 036  | Fc_ECraw  | Eddy correlation CO <sub>2</sub> flux before the Webb corrections                                        | mg m <sup>-2</sup> s <sup>-1</sup> |
| 037  | Fc_raw    | CO <sub>2</sub> flux before the Webb corrections                                                         | mg m <sup>-2</sup> s <sup>-1</sup> |
| 038  | Fc_raw2   | CO <sub>2</sub> flux before the Webb corrections (post 1995)                                             | g m <sup>-2</sup> d <sup>-1</sup>  |
| 039  | Frac_JD   | Fractional day of year expressed as DOY + a decimal unitless fraction                                    |                                    |
| 040  | FT        | Frost table depth as estimated by the zero degree m isotherm                                             |                                    |
| 041  | FT_man    | Frost table depth as estimated by manual probing m                                                       |                                    |
| 042  | GT(#)     | Ground temperature at level # (1=closest to surface) °C                                                  |                                    |

| Code | Parameter              | Description                                                                             | Units                          |
|------|------------------------|-----------------------------------------------------------------------------------------|--------------------------------|
| 043  | GTlg(#)                | Ground temperature at the Sedge site long sensor rod °C (2.25 m)                        |                                |
| 044  | GTsh(#)                | Ground temperature at the Sedge site short sensor rod (0.90 m)                          |                                |
| 045  | H20%                   | CS615 TDR volumetric soil water content (m <sup>3</sup> m <sup>-3</sup> X 100%)         | %                              |
| 046  | HEIGHT                 | Height of the balloon sonde above the surface (±5 m)                                    | m                              |
| 047  | Holl_GT(#)             | Ground temperature at various levels (#) below a hollow                                 | °C                             |
| 048  | Holl_H20%              | Volumetric soil water content (m <sup>3</sup> m <sup>-3</sup> ×100%) beneath a % hollow |                                |
| 049  | HR (CST)               | Central Standard Time (Churchill, MB). Format: hh:mm                                    | hh:mm                          |
| 050  | HR (GMT)               | Greenwich Mean Time (Universal Co-ordinated Time)                                       | hh:mm                          |
| 051  | HR (MST)               | Mountain Standard Time (Inuvik, NWT)                                                    | hh:mm                          |
| 052  | HR (Solar)             | Solar hour for longitude of site                                                        | hh:mm                          |
| 053  | HT(#)                  | Instrument height of each level (#=1-3) above Golf L. surface                           | m                              |
| 054  | Humm_GT(#)             | <ul> <li>Ground temperature at various levels (#) below a<br/>hummock</li> </ul>        |                                |
| 055  | Humm_H <sub>2</sub> 0% | Volumetric soil water content (m <sup>3</sup> m <sup>-3</sup> ×100%) beneath a %        |                                |
| 056  | In_Temp                | Inflow temperature of CO <sub>2</sub> sample at IRGA °C                                 |                                |
| 057  | IRGA_T                 | Optical bench temperature (exterior) in the IRGA                                        | °C                             |
| 058  | K↑                     | Reflected solar radiation flux density                                                  | W m <sup>-2</sup>              |
| 059  | K↓                     | Incoming solar radiation flux density                                                   | W m <sup>-2</sup>              |
| 060  | Kh                     | Turbulent transfer coefficient for sensible heat (eddy conductivity)                    |                                |
| 061  | L↓                     | Incoming long-wave radiation flux density W m<br>(pyrgeometer)                          |                                |
| 062  | L↓_TEMP                | Internal temperature of the pyrgeometer (used for °C correction)                        |                                |
| 063  | LATERAL                | Lateral winds: (>270° and <315°) OR (>70° and <136°)<br>(SECTOR #3)                     |                                |
| 064  | LEC_Q                  | Discharge at the Lower Eastern Creek gauging station                                    | m <sup>3</sup> s <sup>-1</sup> |
| 065  | LOG_Batt               | Campbell data logger's battery voltage V                                                |                                |
| 066  | Lv_CO2                 | Levels used for CO <sub>2</sub> concentration profile (#=used, unitless 0=not)          |                                |
| 067  | Lv_TEMP                | Levels used for temperature (dry-bulb) profile (#=used, unitless 0=not)                 |                                |

| Code | Parameter   | Description                                                                       | Units                   |
|------|-------------|-----------------------------------------------------------------------------------|-------------------------|
| 068  | Lv_VAP      | Levels used for vapour pressure (wet-bulb) profile<br>(#=used, 0=not)             | unitless                |
| 069  | Lv_WIND     | Levels used for horizontal wind profile (#=used, 0=not)                           | unitless                |
| 070  | Mesic_GT(#) | Ground temperature at various levels (#) below a moist area                       | °C                      |
| 071  | MN          | Month                                                                             | unitless                |
| 072  | MRG_Avg     | Rainfall from a manual rain gauge (when it fell; partitioned w/TB)                | mm d <sup>-1</sup>      |
| 073  | MRG_Rain    | Rainfall recorded by a manual rain gauge                                          | mm d <sup>-1</sup>      |
| 074  | Ν           | Number of periods (48 or 24 per day) with North winds                             | Periods d <sup>-1</sup> |
| 075  | NE          | Number of periods (48 or 24 per day) with Northeast F<br>winds                    |                         |
| 076  | NEE         | Net ecosystem exchange (analogous to Fc, except includes dS)                      |                         |
| 077  | NW          | Number of periods (48 or 24 per day) with Northwest winds                         | Periods d <sup>-1</sup> |
| 078  | OFFSHORE    | # periods of offshore winds: >=136° and <=270°<br>(SECTOR #2)                     | unitless                |
| 079  | ONSHORE     | <pre># periods of onshore winds: &gt;=315° or &lt;=70° (SECTOR #1)</pre>          | unitless                |
| 080  | Out_Temp    | Outflow temperature of CO <sub>2</sub> sample at IRGA                             | °C                      |
| 081  | Pa          | Atmospheric pressure                                                              | kPa                     |
| 082  | PAR↓        | Incoming photosynthetically-active radiation                                      | µmol mol <sup>-1</sup>  |
| 083  | PAR↑        | Reflected photosynthetically-active radiation                                     | µmol mol <sup>-1</sup>  |
| 084  | PRECIP      | Total precipitation (rainfall and snow water equivalent)                          | mm                      |
| 085  | Q*          | Net all-wave radiation flux density                                               | W m <sup>-2</sup>       |
| 086  | Q*(mV)      | Net all-wave radiation (before use of calibration mV multiplier)                  |                         |
| 087  | Qb_Grd      | Heat flux through lake bottom sediments based on W m <sup>-1</sup> temp. gradient |                         |
| 088  | Qb_Plt      | Heat flux through lake bottom sediments using a heat W m <sup>-2</sup> flux plate |                         |
| 089  | Qe          | Definitive latent heat flux form the BREB and AERO W m <sup>-2</sup> methods      |                         |
| 090  | Qe_AERO     | Latent heat flux calculated from the Aerodynamic ratio W m <sup>-2</sup> method   |                         |
| 091  | Qe_BREB     | Latent heat flux calculated from the Bowen ratio W m <sup>-2</sup> wethod         |                         |

| Code | Parameter         | Description                                                                     | Units             |
|------|-------------------|---------------------------------------------------------------------------------|-------------------|
| 092  | QE_calc           | Latent heat flux calculated as a residual ( $Q_e=Q^*-Q_g-Q_h$ _EC)              | W m <sup>-2</sup> |
| 093  | Qeq               | Equilibrium evaporation                                                         | W m <sup>-2</sup> |
| 094  | Qg                | Ground (soil) heat flux density                                                 | W m <sup>-2</sup> |
| 095  | QgFlat            | Flat ground heat flux plate                                                     | W m <sup>-2</sup> |
| 096  | QgHeath           | Heath ground heat flux plate                                                    | W m <sup>-2</sup> |
| 097  | QgHoll            | Hollow ground heat flux plate                                                   | W m <sup>-2</sup> |
| 098  | QgHumm            | Hummock ground heat flux plate                                                  | W m <sup>-2</sup> |
| 099  | QgLich            | Lichen ground heat flux plate                                                   | W m <sup>-2</sup> |
| 100  | QgPlt<br>(Canopy) | Ground heat flux plate below the willow canopy                                  | W m⁻²             |
| 101  | QgPlt (Dry)       | Dry ground heat flux plate                                                      | W m <sup>-2</sup> |
| 102  | QgPlt (Mesic)     | Moist ground heat flux plate                                                    | W m <sup>-2</sup> |
| 103  | QgPlt (Open)      | Ground heat flux plate in an open, <i>C. aquatilis</i> -covered area            | W m⁻²             |
| 104  | QgPlt(#)          | Soil heat flux plate (# indicates one of several)                               | W m <sup>-2</sup> |
| 105  | QgPlt_AVG         | Average heat flux plate value (weighted average of several T.U.)                | W m⁻²             |
| 106  | QgPool            | Wet ground heat flux plate in an ephemeral pool                                 | W m <sup>-2</sup> |
| 107  | QgWill            | Willow ground heat flux plate                                                   | W m <sup>-2</sup> |
| 108  | Qh                | Definitive sensible heat flux form the BREB and AERO methods                    | W m⁻²             |
| 109  | Qh_AERO           | Sensible heat flux calculated from the Aerodynamic Method                       |                   |
| 110  | Qh_BREB           | Sensible heat flux calculated from the Bowen ratio W method                     |                   |
| 111  | Qh_EC             | EC Sensible heat flux measured with the eddy correlation W m technique          |                   |
| 112  | QHnw              | Sensible heat flux from eddy cor. system on NW side of W m <sup>-2</sup> tower  |                   |
| 113  | QHse              | Sensible heat flux from eddy cor. system on SE side of Wintower                 |                   |
| 114  | Qs                | Total heat storage for twin Lakes forest (Qg+canopy?)                           | W m <sup>-2</sup> |
| 115  | Qw                | Heat storage in a water volume (Golf Lake). ½-hr. W m <sup>-2</sup> computation |                   |
| 116  | Qw_Grd            | Heat storage in a water volume based on Qw W m <sup>-2</sup> water+Qb_Grd       |                   |
| 117  | Qw_Plt            | Heat storage in a water volume based on Qw W m <sup>-2</sup><br>water+Qb_Plt    |                   |

| Code | Parameter    | Description                                                          | Units                          |
|------|--------------|----------------------------------------------------------------------|--------------------------------|
| 118  | Qw_Ts        | Heat storage in a water volume based only on surface temp, TsGolf    | W m <sup>-2</sup>              |
| 119  | Qw1.5        | Heat storage in a water volume (Golf Lake). 1.5 hr.<br>running mean  | W m <sup>-2</sup>              |
| 120  | Qw2.5        | Heat storage in a water volume (Golf Lake). 2.5 hr.<br>running mean  | W m <sup>-2</sup>              |
| 121  | RG(#)        | Rainfall recorded by a gauge (#=1-18) in the Eastern<br>Creek basin  | mm d <sup>-1</sup>             |
| 122  | RH           | Relative humidity                                                    | %                              |
| 123  | Ri           | Richardson stability index                                           | unitless                       |
| 124  | RO           | Runoff from the Eastern Creek drainage basin,<br>RO=LEC-(UEC+Will)   | m <sup>3</sup> s <sup>-1</sup> |
| 125  | S            | Number of periods (48 or 24 per day) with South winds                | Periods d <sup>-1</sup>        |
| 126  | SE           | Number of periods (48 or 24 per day) with Southeast winds            | Periods d <sup>-1</sup>        |
| 127  | SECTOR       | Wind direction sector (1=Onshore, 2=Offshore, 3=Lateral)             | unitless                       |
| 128  | SNOW         | Snowfall accumulation                                                | cm                             |
| 129  | Stg_LEC      | Stage (water depth) at the Lower Eastern Creek gauging station       | m                              |
| 130  | Stg_UEC      | Stage (water depth) at the Upper Eastern Creek gauging station       | m                              |
| 131  | Stg_Willow   | Stage (water depth) at the Willow Creek gauging station              |                                |
| 132  | SW           | Number of periods (48 or 24 per day) with Southwest Per winds        |                                |
| 133  | T_LOG        | Campbell data logger's panel temperature                             | °C                             |
| 134  | ТО           | Estimated surface temperature (from T profile °(                     |                                |
| 135  | Tair         | Ambient air temperature at a reference height (3.2 m)                | °C                             |
| 136  | TB_Rain      | Rainfall recorded by a tipping bucket rain gauge                     | mm                             |
| 137  | Td(#)        | Psychrometer dry-bulb temperature at level # °C (1=bottom)           |                                |
| 138  | Therm(#)     | Soil temperature at level (#) as measured manually by °C thermistors |                                |
| 139  | ThermHR      | Solar time at which the thermistors were measured                    | hh:mm                          |
| 140  | TIME (solar) | Solar time in the format hh:mm:ss unitless                           |                                |
| 141  | Tpool(#)     | Temperature of a small ephemeral pool °C                             |                                |

| Code | Parameter       | Description                                                                         | Units |
|------|-----------------|-------------------------------------------------------------------------------------|-------|
| 142  | Tpot.           | Potential temperature (adjusted with the DALR=0.0098 °C m <sup>-1</sup> )           | К     |
| 143  | Ts(#)           | Surface temperature of a certain terrain type                                       | °C    |
| 144  | Ts_AVG          | Average surface temperature based on several terrain types                          | °C    |
| 145  | Tsea            | Ocean temperature (flooded tidal flats) near Half-Way<br>Point                      | °C    |
| 146  | Tsed            | Temperature of the lake bottom sediment (in gycha) <- °C sp.?                       |       |
| 147  | TsFlat          | Surface temperature on flat ground                                                  | °C    |
| 148  | TsGolf          | Surface temperature of Golf lake                                                    | °C    |
| 149  | TsHoll          | Surface temperature in a hollow                                                     | °C    |
| 150  | TsHumm          | Surface temperature on a hummock                                                    | °C    |
| 151  | TsLich          | Surface temperature of lichen                                                       | °C    |
| 152  | Tsoil           | Soil temperature from psychrometer reference plug (7-<br>10cm deep)                 | °C    |
| 153  | Tsurf (Driest)  | Driest ground surface temperature                                                   | °C    |
| 154  | Tsurf (Dry)     | Dry ground surface temperature                                                      | °C    |
| 155  | Tsurf (Mesic)   | Moist ground surface temperature                                                    | °C    |
| 156  | Tsurf (Wet)     | Wet ground surface temperature                                                      | °C    |
| 157  | Tsurf (Wettest) | Wettest ground surface temperature                                                  | °C    |
| 158  | Tsurf           | Soil surface temperature                                                            | °C    |
| 159  | TsWill          | Surface temperature under willows                                                   | °C    |
| 160  | Tw(#)           | Psychrometer wet-bulb temperature at level # °C (1=bottom)                          |       |
| 161  | Twater(#)       | Water temperature at level # (1=closest to surface) in a °C lake                    |       |
| 162  | u               | Ambient horizontal wind speed at a reference height m s <sup>-1</sup>               |       |
| 163  | u(#)            | Anemometer horizontal wind speed at level # m s <sup>-1</sup><br>(1=bottom)         |       |
| 164  | u*              | Friction velocity                                                                   | m s⁻¹ |
| 165  | u_SD            | Standard deviation of wind speed m                                                  |       |
| 166  | UEC_Q           | Discharge at the Upper Eastern Creek gauging station m <sup>3</sup> s <sup>-1</sup> |       |
| 167  | VPD             | Ambient vapour pressure deficit at a reference height kPa                           |       |
| 168  | VPD(#)          | Vapour pressure deficit at level # (1=bottom) kPa                                   |       |
| 169  | W               | Number of periods (max. 48 or 24 per day) with West Periods d <sup></sup> winds     |       |

| Code | Parameter | Description                                                                      | Units                          |
|------|-----------|----------------------------------------------------------------------------------|--------------------------------|
| 170  | WEBB      | Webb correction for $Q_e$ and $Q_h$ combined (used after g m <sup>-2</sup> 1995) |                                |
| 171  | Wet_GT(#) | Ground temperature at various levels (#) below a wet °C area                     |                                |
| 172  | Willow_Q  | Discharge at the Willow Creek gauging station                                    | m <sup>3</sup> s <sup>-1</sup> |
| 173  | WT        | Water table level relative to the surface where the well is                      |                                |
| 174  | WT(#)     | Water table depth at wells in the Eastern Creek basin m (#=1-18)                 |                                |
| 175  | wTprime   | (w'T') Fluctuation of vertical wind and temp. about their means                  | m s⁻¹ °C                       |
| 176  | YR        | Year                                                                             | unitless                       |
| 177  | z0        | Surface roughness                                                                | m                              |

| Code | Units                              | Code | Units                   |
|------|------------------------------------|------|-------------------------|
| 01   | °C                                 | 16   | m s⁻¹ °C                |
| 02   | К                                  | 17   | mm d <sup>-1</sup>      |
| 03   | kPa                                | 18   | RESERVED                |
| 04   | mm                                 | 19   | Periods d <sup>-1</sup> |
| 05   | cm                                 | 20   | mV                      |
| 06   | m                                  | 21   | V                       |
| 07   | ppm                                | 22   | RESERVED                |
| 08   | W m <sup>-2</sup>                  | 23   | ms                      |
| 09   | µmol mol <sup>-1</sup>             | 24   | hh:mm                   |
| 10   | ppm m <sup>-1</sup>                | 25   | RESERVED                |
| 11   | m s⁻¹                              | 26   | Tenths                  |
| 12   | m² s <sup>-1</sup>                 | 27   | Degrees                 |
| 13   | m <sup>3</sup> s <sup>-1</sup>     | 28   | %                       |
| 14   | g m <sup>-2</sup> d <sup>-1</sup>  | 29   | RESERVED                |
| 15   | mg m <sup>-2</sup> s <sup>-1</sup> |      |                         |

Table 6. Unit and Codes for Readme Files

# 4 DATA ACQUISITION AND PROCESSING

These data were originally measured and collected via ground stations coordinated by Dr. Wayne Rouse from 1984 to 1998 and then compiled into a database in 1999 so that there was a central repository to house the data. NSIDC received a CD-ROM containing the data as well as ancillary information in 2001. In 2013, Katie Schmitt, of the Graduate School of Library and Information Science at the University of Illinois at Urbana-Champaign, worked on the collection. Ms. Schmitt migrated the original binary data files, written in a format meant to be used by FORTRAN-77 processing code, to text files (CSV and TXT) so that the data might be more readily used by scientific researchers. She did this as part of a course on the Foundations of Data Curation taught by NSIDC's Ruth Duerr. Ms. Schmitt also provided NSIDC with documentation based on information from the ClimoBase Users Manual (Boudreau, 1999).

Updating the data for publication included replacing space delimiters with commas and cleaning the data by replacing erroneous data, previously flagged -6999, with the term NULL. Data that were merged in the original files were separated with commas when the original value could be determined. If the value could not be determined, the data were replaced with NULL. This occurred in a few instances when data appeared in the binary files in a format such as "0.457.3467.1223.", and we could not find information that would allow interpreting these values as measurements. The

readme files were migrated to a plain text format, but the content was not changed. Here is a summary of steps taken:

- Open the data files and replace all of the space delimiters with commas, then save them as .csv
- Separate any merged data such as '+6.879+2.987' or '56.789-3.42,' with a comma before the second '+' or '-' sign
- Replace any merged data with multiple decimal points ('36.4226.769.5') with the accurate number of NULL values
- Replace and data that was flagged missing or erroneous, previously flagged with -6999, with NULL

In 2014, these data were added to the NOAA@NSIDC collection at NSIDC.

## 4.1 Sensor or Instrument Description

The measurements for this data set were taken at 24 different ground stations using energy balance sensors such as temperature, humidity, and wind speed sensors; net radiometers, and heat flux plates to name a few. The details of each sensor can be found in Section 5 of the CllimoBase Users Manual (Boudreau, 1999) which lists published papers that can be referenced for specific instrumentation information at each ground station.

## 4.2 Quality Assessment

The ClimoBase Users Manual states that "these data originated from many different sources and required varying levels of rescue, their quality cannot be guaranteed. Most of the data in ClimoBase has gone through at least a basic level of automated batch quality control and the majority is believed to be of high quality, however, the onus is on the user to conduct their own due diligence by carefully scrutinizing the data they extract from ClimoBase. During the batch QC process, highly suspicious or irregular data have been flagged as bad/missing... On the other hand, extreme values that could not be readily discounted by available information were normally left intact and their use will be left up to the user's discretion" (Boudreau, 1999, p. 6).

# 5 REFERENCES AND RELATED PUBLICATIONS

CAG. 1998. 1998 CAG Award for Scholarly Distinction in Geography: Wayne Robert Rouse. Retrieved June 15, 2014, from http://www.cag-acg.ca/en/wayne\_robert\_rouse.html.

Boudreau, D. 1999. ClimoBase Users Manual — A Climatological Database of Dr. Wayne Rouse's Data 1984 - 1998: Churchill, MB; Marantz Lake, MB; Inuvik, NWT. *Environment Canada*.

# 5.1 Related Publications

Bailey, W. G., T. R. Oke, and W. R. Rouse, eds. 1997. The Surface Climates of Canada. Vol. 4. McGill–Queen's University Press..

Rouse, W. R., M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. Marsh, M. Mcdonald, B. J. Nicholson, N. T. Roulet, and J. P. Smol. 1997. Effects Of Climate Change On The Freshwaters Of Arctic And Subarctic North America. Hydrological Processes 11(8): 873–902.

# 6 CONTACTS AND ACKNOWLEDGMENTS

#### Acknowledgments:

We thank Dr. Wayne Rouse for his commitment to data stewardship and sharing.

Katie Schmit's curation work on these data was arranged by Ruth Duerr and Florence Fetterer.

NOAA NESDIS NGDC supported the publication of these data through its funding for NOAA@NSIDC.

# 7 DOCUMENT INFORMATION

## 7.1 Document Authors

This documentation was prepared by Katie Schmitt based on information in correspondence with Florence Fetterer and the NSIDC staff and on the ClimoBase Users Manual (Boudreau, 1999). The document was edited and finalized for publication by Ann Windnagel.

## 7.2 Document Creation Date

June 2014

## 7.3 Date Last Updated

December 2020