ATL24 Product Data Dictionary Date Generated: 2025-03-06T15:19:24 | Group: /ancillary_data | | | | | |-----------------------------------|-----------------------------|--|---|--| | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | atlas_sdp_gps_epoch
CONTIGUOUS | DOUBLE
- | ATLAS Epoch
Offset | seconds since 1980-
01-
06T00:00:00.000000Z | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. Source: Operations | | data_end_utc
CONTIGUOUS | STRING
- | End UTC Time
of Granule
(CCSDS-A,
Actual) | 1 | UTC (in CCSDS-A format) of the last data point within the granule. Source: Derived | | data_start_utc
CONTIGUOUS | STRING
- | Start UTC Time
of Granule
(CCSDS-A,
Actual) | 1 | UTC (in CCSDS-A format) of the first data point within the granule. Source: Derived | | end_cycle
CONTIGUOUS | INTEGER
- | Ending Cycle | 1 | The ending cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. Source: Derived | | end_delta_time
CONTIGUOUS | DOUBLE
- | ATLAS End
Time (Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. Source: Derived | | end_geoseg
CONTIGUOUS | INTEGER
- | Ending
Geolocation
Segment | 1 | The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. Source: Derived | | end_gpssow
CONTIGUOUS | DOUBLE
- | Ending GPS
SOW of
Granule
(Actual) | seconds | GPS seconds-of-week of the last data point in the granule. Source: Derived | | end_gpsweek
CONTIGUOUS | INTEGER
- | Ending
GPSWeek of
Granule
(Actual) | weeks from 1980-01-
06 | GPS week number of the last data point in the granule. Source: Derived | | end_orbit
CONTIGUOUS | INTEGER
- | Ending Orbit
Number | 1 | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. Source: Derived | | end_region
CONTIGUOUS | INTEGER
- | Ending Region | 1 | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products | | | | | | are completely independent. Source: Derived | |-------------------------------------|--------------|---|------------------------------|--| | end_rgt
CONTIGUOUS | INTEGER
- | Ending
Reference
Groundtrack | 1 | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. Source: Derived | | granule_end_utc
CONTIGUOUS | STRING
- | End UTC Time
of Granule
(CCSDS-A,
Requested) | 1 | Requested end time (in UTC CCSDS-A) of this granule. Source: Derived | | granule_start_utc
CONTIGUOUS | STRING
- | Start UTC Time
of Granule
(CCSDS-A,
Requested) | 1 | Requested start time (in UTC CCSDS-A) of this granule. Source: Derived | | release
CONTIGUOUS | STRING
- | Release
Number | 1 | Release number of the granule. The release number is incremented when the software or ancillary data used to create the granule has been changed. Source: Operations | | resource
CONTIGUOUS | STRING
- | ATL03
Resource | 1 | ATL03 granule used to produce this granule Source: Operations | | sliderule_commit
CONTIGUOUS | STRING
- | SlideRule
Commit | 1 | Git commit ID (https://github.com/SlideRuleEarth/sliderule.git) of SlideRule software used to generate this granule Source : Operations | | sliderule_environment
CONTIGUOUS | STRING
- | SlideRule
Environment | 1 | Git commit ID (https://github.com/SlideRuleEarth/sliderule.git) of SlideRule environment used to generate this granule Source : Operations | | sliderule_version
CONTIGUOUS | STRING | SlideRule
Version | 1 | Version of SlideRule software used to generate this granule Source : Operations | | start_cycle
CONTIGUOUS | INTEGER
- | Starting Cycle | 1 | The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. Source: Derived | | start_delta_time
CONTIGUOUS | DOUBLE
- | ATLAS Start
Time (Actual) | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. Source: Derived | | start_geoseg
CONTIGUOUS | INTEGER
- | Starting
Geolocation
Segment | 1 | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. Source: Derived | | start_gpssow
CONTIGUOUS | DOUBLE
- | Start GPS SOW
of Granule
(Actual) | seconds | GPS seconds-of-week of the first data point in the granule. Source: Derived | | start_gpsweek
CONTIGUOUS | INTEGER
- | Start GPSWeek
of Granule
(Actual) | weeks from 1980-01-
06 | GPS week number of the first data point in the granule. Source: Derived | | start_orbit
CONTIGUOUS | INTEGER
- | Starting Orbit
Number | 1 | The starting orbit number associated with the data contained within this granule. The orbit number increments | | | | | | each time the spacecraft completes a full orbit of the Earth. Source: Derived | |--------------------------------|-----------------------------|--------------------------------------|------------------------------|---| | start_region
CONTIGUOUS | INTEGER
- | Starting Region | 1 | The starting product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. Source: Derived | | start_rgt
CONTIGUOUS | INTEGER
- | Starting
Reference
Groundtrack | 1 | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. Source: Derived | | version
CONTIGUOUS | STRING
- | Version | 1 | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current release. Source: Operations | | Group: /gt1l | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | class_ph
CHUNKED | INTEGER_1(:) | Photon classification | scalar | 0 - unclassified, 1 - other, 40 - bathymetry, 41 - sea surface Source: ATL03 | | confidence
CHUNKED | DOUBLE(:) | Ensemble confidence | scalar | ensemble confidence score from 0.0 to 1.0 where larger numbers represent higher confidence in classification Source: ATL03 | | delta_time
CHUNKED | DOUBLE(:) | Elapsed GPS seconds | seconds since 2018-
01-01 | The transmit time of a given photon, measured in seconds from the ATLAS Standard Data Product Epoch. Note that multiple received photons associated with a single transmit pulse will have the same delta_time. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. Source: ATL03 | | ellipse_h
CHUNKED | FLOAT(:) | Photon WGS84
height | meters | Height of each received photon, relative to the WGS-84 ellipsoid including refraction correction. Note neither the geoid, ocean tide nor the dynamic atmosphere (DAC) corrections are applied to the ellipsoidal heights. Source: ATL03 | | index_ph
CHUNKED | INTEGER(:) | Photon index | scalar | 0-based index of the photon in the ATL03 heights group Source: ATL03 | | index_seg
CHUNKED | INTEGER(:) | Segment index | scalar | 0-based index of the photon in the ATL03 geolocation group Source: ATL03 | | invalid_kd
CHUNKED | UINT_1_LE(:)
- | Invalid Kd | boolean | No data was available in the VIIRS Kd490 8-day cycle dataset at the time and location of the photon Source: ATL03 | | invalid_wind_speed
CHUNKED | UINT_1_LE(:) | Invalid wind speed | boolean | ATL09 data was not able to be read to determine wind speed Source: ATL03 | | lat_ph
CHUNKED | DOUBLE(:) | Latitude
latitude | degrees_north | Latitude of each received photon. Computed from the ECF Cartesian coordinates of the bounce point. Source: ATL03 | | lon_ph
CHUNKED | DOUBLE(:) | Longitude
longitude | degrees_east | Longitude of each received photon. Computed from the ECF Cartesian coordinates of the bounce point. Source: ATL03 | | low_confidence_flag
CHUNKED | UINT_1_LE(:) | Low confidence bathymetry flag | boolean | There is low confidence that the photon classified as bathymetry is actually bathymetry Source: ATL03 | | night_flag
CHUNKED | UINT_1_LE(:) | Night flag | boolean | The solar elevation was less than 5 degrees at the time and location of the photon Source : ATL03 | |----------------------------------|-----------------------------|--|------------------------------|--| | ortho_h
CHUNKED | FLOAT(:) | Orthometric height | meters | Height of each received photon, relative to the geoid. Source: ATL03 | | sensor_depth_exceeded
CHUNKED | UINT_1_LE(:)
- | Sensor depth exceeded | boolean | The subaqueous photon is below the maximum depth detectable by the ATLAS sensor given the Kd of the water column Source: ATL03 | | sigma_thu
CHUNKED | FLOAT(:) | Total horizontal uncertainty | meters | The combination of the aerial and subaqueous horizontal uncertainty for each received photon Source: ATL03 | | sigma_tvu
CHUNKED | FLOAT(:) | Total vertical uncertainty | meters | The combination of the aerial and subaqueous vertical uncertainty for each received photon Source: ATL03 | | surface_h
CHUNKED | FLOAT(:) | Sea surface orthometric height | meters | The geoid corrected height of the sea surface at the detected photon Source: ATL03 | | x_atc
CHUNKED | DOUBLE(:) | Distance from equator crossing | meters | Along-track distance in a segment projected to the ellipsoid of the received photon, based on the Along-Track Segment algorithm. Total along track distance can be found by adding this value to the sum of segment lengths measured from the start of the most recent reference groundtrack. Source: ATL03 | | y_atc
CHUNKED | FLOAT(:) | Distance off
RGT | meters | Across-track distance projected to the ellipsoid of the received photon from the reference ground track. This is based on the Along-Track Segment algorithm described in Section 3.1 of the ATBD. Source: ATL03 | | Group: /metadata | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | extent
CONTIGUOUS | STRING
- | Query
MetaData | json | geospatial and temporal extents Source: Derived | | profile
CONTIGUOUS | STRING
- | Algorithm
RunTimes | json | runtimes of the various algorithms Source: Derived | | sliderule
CONTIGUOUS | STRING
- | SlideRule
MetaData | json | sliderule server and request information Source: Derived | | stats
CONTIGUOUS | STRING
- | Granule Metrics | json | granule level statistics Source: Derived | | Group: /orbit_info | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | crossing_time
CONTIGUOUS | DOUBLE
- | Ascending
Node Crossing
Time
time | seconds since 2018-
01-01 | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. Source: POD/PPD | | cycle_number
CONTIGUOUS | INTEGER_1
- | Cycle Number | counts | Tracks the number of 91-day cycles in the mission, beginning with 01. A unique orbit number can be determined by subtracting 1 from the cycle_number, multiplying by 1387 and adding the rgt value. Source: POD/PPD | | lan
CONTIGUOUS | DOUBLE
- | Ascending
Node Longitude | degrees_east | Longitude at the ascending node crossing. Source: POD/PPD | | orbit_number
CONTIGUOUS | INTEGER_2
- | Orbit Number | 1 | Unique identifying number for each planned ICESat-2 orbit. Source : Operations | | rgt
CONTIGUOUS | INTEGER_2 | Reference
Ground Track | counts | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by | | | | | | GT2L and GT2R. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. Source: POD/PPD | |------------------------------|-------------|---|------------------------------|---| | sc_orient
CONTIGUOUS | INTEGER_1 | Spacecraft
Orientation | 1 | This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. Source: POD/PPD Flags: 0()=backward, 1()=forward, 2()=transition | | sc_orient_time
CONTIGUOUS | DOUBLE
- | Time of Last
Spacecraft
Orientation
Change
time | seconds since 2018-
01-01 | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. Source: POD/PPD |