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Key Points

• ATL24 is the Level 3 along-track bathymetry product using ICESat-2 measurements

• ATL24 provides the photon level classification of sea surface and seafloor using AI/ML methods
for coastal and nearshore regions

• ATL24 provides both sea surface and refraction-corrected seafloor heights, with associated
point classification confidence values and height uncertainty values
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1 Introduction
Along with solid earth, cryosphere, vegetation structure, and hydrology, coastal processes are
recognized focus topics by the National Academy of Science as in need of better understanding
regarding how they respond to climate variability and how those changes will subsequently
affect societal resources (National Academies of Sciences and Medicine 2018). Improving
our understanding of coastal processes such as wave structure, tides, currents, sediment
transport (erosion and deposition), and benthic environments requires knowledge of shallow
water bathymetry.

Unfortunately, there is currently a global lack of nearshore bathymetric data, which hinders
a number of coastal and marine science, management and engineering applications. Important
uses of nearshore bathymetry include analysis of nearshore hydrodynamics, morphology, and
sediment transport (Plant et al. 2002), tsunami inundation modeling (Titov et al. 2005),
and benthic habitat mapping (Costa et al. 2009), among others (Gao 2009). Due to the
importance of shallow nearshore bathymetric data and the challenges in acquiring the data
with conventional, ground-based surveying technologies, remote sensing methods have been
of interest since early studies into the feasibility of bathymetric measurement from aerial
photography in the 1940s (Moore 1947). This interest in remotely-sensed bathymetry began
accelerating in the mid-1970s (Polcyn and Lyzenga 1975; Warne 1978), as satellite imagery
began to become publicly available, and has only continued to grow in subsequent decades
(Christopher E. Parrish, L. A. Magruder, et al. 2019; Gao 2009). Coastal communities, in
particular, face critical issues associated with the influence of climate change on local sea
level and natural resource availability. The coasts experience heightened risks continually, but
recent studies indicate an increased timeline of negative impact making future studies with
remote sensing critical to improving resiliency and deriving mitigation strategies to protect
coastal environments.

Nearshore bathymetry is notoriously difficult to measure. Conventional, terrestrial sur-
veying technologies, such as GNSS and total stations, are not designed for underwater data
acquisition. Hence, these technologies are only viable in the shallowest waters, in which
a person can stand with a survey rod, and, even then, such methods can be laborious,
dangerous (especially, in high-energy nearshore environments), and expensive. Meanwhile,
boat-based acoustic hydrographic surveying technologies, such as multibeam echosounders
(MBES), enable efficient and highly-accurate data acquisition in deeper waters (> 4-5 m).
However, MBES is inefficient in very shallow areas, and ships and even small boats face
safety challenges in the shallowest areas, especially in the presence of nearshore hazards to
navigation. These hazards prompted the National Oceanic and Atmospheric Administration
(NOAA) hydrographic surveying fleet to implement a policy of not surveying shoreward of a
pre-defined boundary, termed the navigable area limit line (NALL). The NALL is generally
the seaward-most of: a) the 3.5-m depth contour, or b) a distance of 0.8 mm at chart scale
seaward of the shoreline (e.g., 64 m seaward of the shoreline at a chart scale of 1:80,000)
(NOAA 2021). However, the NALL can be set even further offshore in the presence of hazards,
such as kelp, rocks, or breaking waves.

Another local method for acquiring shallow water bathymetry along the NALL is airborne
bathymetric lidar. These surveys are quite detailed and provide high resolution, highly
accurate seafloor retrievals but are limited in terms of cost and are often infeasible in remote
coastal locations. The motivation for airborne surveys is both in filling a measurement gap
along the coastlines to characterize benthic environmental conditions and also to pursue a
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seamless topographic/bathymetric surface in support of better modeling associated sediment
transport, hydrodynamics, inundation and discharge that are improved in the absence of
discontinuities. Specific examples of priority shallow-water benthic habitats include coral
reefs, eelgrass beds, and kelp forests, all of which are important components of our nearshore
communities in terms of resources and water quality. In the U.S., airborne bathymetric lidar
has been collected over a number of habitats, including in Florida, Hawaii, and the U.S.
Virgin Islands (Brock et al. 2004; Wedding et al. 2008; Wilson et al. 2019) with a focus on
coral reef health and protection of marine ecosystems. In this example, the airborne lidar is
critical, but there remain voids in a myriad of other locations where local airborne data is
not available which hinders long-term monitoring efforts at the global scale. Beyond coral
reefs, numerous other important and fragile benthic habitats exist worldwide, with each
responding differently to climate variability and significant storm events. It is important that
we determine a capability through direct measurement or data fusion that we can achieve
the vertical accuracy and spatial extent required to understand drivers of nearshore change
and inform policies relative to quantitative results of the structural and spectral variations
that will influence our future communities.

An opportunity to capture shallow water bathymetry at the global scale was realized
in 2018 after the launch of NASA’s Earth observing laser altimeter mission, ICESat-2 (Ice,
Cloud and Land Elevation Satellite-2). ICESat-2 was developed as a means to provide the
science community significant insight into changes in the mass of ice sheets, sea ice, and
vegetation heights and follows the predecessor mission, ICESat (2003-2009) (Schutz et al.
2005). Both missions were motivated by similar science objectives, primarily associated
with monitoring the cryosphere for temporal and spatial variability, and secondary goals for
vegetation structure. For ICESat-2 specifically, there were nine level 1 science requirements
that included elevation change rates of our polar ice sheets and sea ice, in both the Southern
Ocean and the Arctic sea (Markus et al. 2017. The requirements were increasingly more
challenging than the predecessor mission which invoked development of new lidar technology
focused primarily on increasing the possible spatial resolution both along-track (increased laser
pulse repetition rates) and across-track (multiple beams). The resulting instrument, ATLAS
(Advanced Topographic Laser Altimeter System), is a photon-counting, 532 nm wavelength,
6 beam, 10 kHz system that provides 0.7 m along-track resolution and six elevation profiles
across 6.6 km of terrain swath. The orbit is in a 91-day repeat configuration to facilitate
capture of seasonal trends of surface change and contribute to annual statistics of variability
(L. Magruder et al. 2021, L. A. Magruder, T. Neumann, et al. 2024, L. A. Magruder, Farrell,
et al. 2024).

Although it is well known that wavelengths of 532 nm can penetrate water and are often
utilized for bathymetric mapping, due to the micro-pulse energy level and 500 km distance
between the spacecraft and the Earth’s surface, the bathymetric measurement capabilities
of ICESat-2 were largely unknown pre-launch and only investigated in a few studies (e.g.,
N. Forfinski-Sarkozi and C. Parrish 2016; N. A. Forfinski-Sarkozi and Christopher E. Parrish
2019; Jasinski et al. 2016). Dedicated pre-launch preparation for orbit observations in support
of bathymetry was not initiated, as was the case for other science disciplines. The development
of the algorithms to produce the initial set of mission data products was initiated in parallel
to the technology development during the pre-launch period. The along-track Level 3a (L3a)
data products provided to the community by the ICESat-2 Project Science Office (PSO)
are specific to surface type. These products include land ice, sea ice, inland water, ocean,
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land/vegetation and atmospheric profiles. Each of these L3a data types use ATL03 as input.
ATL03, the Level 2b geolocated photon cloud, contains both signal and noise attributed to
atmospheric backscatter and/or system response (e.g. saturation effects) T. A. Neumann
et al. 2019a. The production algorithms for the L3a products have customized signal finding,
optimized length scales, performance metrics and environmental characterization parameters
based on expected surface structure, reflectivity and potential science application needs.

Once on-orbit, the ICESat-2 bathymetric capability was revealed, and the community has
embraced the contribution to coastal sciences. ATLAS has demonstrated the ability to reach
depths up to 40 m in certain environments (Christopher E. Parrish, L. A. Magruder, et al.
2019) and shows great utility with the measurements themselves or in conflation with other
data sources. Currently, ICESat-2 has been on-orbit for 6+ years and remains in nominal
condition as it operates within its extended mission timeline. Recently, the ICESat-2 PSO
has initiated the development of a dedicated L3a product for bathymetry in response to
the community’s need for data and the complexities and challenges related to signal finding
and surface classification (water surface, seafloor). This new product, ATL24, will provide
automated bathymetry extraction, sea surface/wave parameters, and water column statistics
in all regions that provide adequate conditions for probable measurements. In contrast to
other ATLAS data products that were designed pre-launch, a great benefit to the ATL24
development effort is the opportunity to learn from and leverage the great wealth of ICESat-2
bathymetry studies that have been published over the past six years.
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2 Context/Background

2.1 Historical Perspective

The algorithms used in this ATBD draw on the long history of airborne lidar bathymetry
(ALB) development. An excellent summary of ALB development history is provided in
Guenther 2007, starting with the pioneering work of Hickman and Hogg 1969 in the late
1960s, and extending through the NASA-NOAA Airborne Oceanographic Lidar (AOL) in the
1970s (Goodman 1979; Hoge et al. 1980), the experimental advanced airborne research lidar
(EAARL) and follow-on EAARL-B in, respectively, the early 2000s and early 2010s (Brock
et al. 2004; Wright et al. 2016) to modern commercial ALB systems (Kastdalen et al. 2024.
In turn, ALB theory and development extensively leveraged theory and tools from the field
of ocean optics (Jerlov 1976; Curtis D Mobley 2001; C. Mobley et al. 2022). Additionally,
ATL24 development leverages the significant work that has been published on ICESat-2
bathymetry since the 2018 ICESat-2 launch, including, but not limited to, work done by
the ATL24 team and the Bathymetry Working Group of the ICESat-2 Science Team (e.g.,
Babbel et al. 2021; Christopher E. Parrish, L. Magruder, et al. 2022; T. C. Thomas et al.
2021; Ranndal et al. 2021b; Albright and Glennie 2020).

Beyond processing algorithms, ATL24 also leverages recent developments in open science
and data dissemination. NASA has embraced open access and open science in providing
important Earth data to the world without constraint. The primary distribution architecture
is the Earth Observing system Data and Information system (EOSDIS) with major facilities
at the Distributed Active Archive Centers (DAAC) located across the United States. The
DAACs act as stewards of the Earth observing satellites and field measurement programs and
are responsible for processing, archiving, documenting and distributing data. For the original
ICESat mission and for the ICESat-2 mission the designated DAAC is the National Snow
and Ice Data Center (NSIDC) in Boulder Colorado. NSIDC is the primary DAAC for snow
and ice processes with a particular focus in snow, ice, atmosphere and ocean interactions and
has been operational since 1976.

The partnership between the NSIDC team and the ICESat-2 mission has been extremely
successful in data product development and distribution via Earthdata Search. The mecha-
nisms of searching and selecting data repositories in NSIDC are well established and provide
useful tools for data filtering and visualization.
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3 ATL24 Overview

3.1 ATL24 Data Workflow

Similar to other ICESat-2 Level 3a products, the input to the ATL24 pipeline is Level 2a,
Global geolocated point cloud data; ATL03 (T. A. Neumann et al. 2019b). ATL03 provides
every detected photon (signal and noise), with the calculated geolocation (geodetic latitude
and longitude) and associated parameters (operational) for each of ATLAS’s six beams. The
ATL03 product also provides signal confidence flags and estimated uncertainties at the photon
level. Gridded surface masks for land ice, sea ice, land, ocean and inland water products are
used within the L3b processing workflows to reduce the volume of data processed and guide
the production of these surface-specific, higher-level ICESat-2 data products. The ATL24
workflow requires a similar search approach to limit data processing to coastal and nearshore
environments that present a reasonable opportunity for capturing bathymetry. As such, a
gridded bathymetry mask based on possible retrievability was created to guide the processing
extents and is discussed in detail in section subsection 6.4.

Figure 1 provides the overarching processing pipeline for ATL24, including the search
mask step to identify relevant ATL03 granules. The ATL24 algorithm’s main goal is to
provide a solution for robust, global bathymetric and sea surface signal extraction and
classification. The specific classifications in ATL24 are are sea surface (41), and bathymetry
(40), all other photons, not classified as 40 or 41 are considered unclassified (0). These point
class designations are from the American Society for Photogrammetry and Remote Sensing
(ASPRS) LAS Domain Profile for Topo-Bathy Lidar (ASPRS 2013).

In many regards, the classification step in the workflow is the most important and
challenging aspect in producing the product. In airborne bathymetric lidar, significant
human analyst time is typically spent manually providing the classifications of the data. This
human-in-the-loop is primarily due to the lack of any individual algorithm capable of handling
the full extent of seafloor morphologies, substrates, depth ranges and cover types (e.g. coral,
seagrass, macroalgae) that exist worldwide. Certainly, customized classification algorithms
do currently exist for ALB as well as ICESat-2 but are all optimized for location-specific
environmental conditions which precludes the scalability of any single solution to a global
level.

A novel aspect of the ATL24 workflow is to use an ensemble model for sea surface and
seafloor point classification. The overarching idea is that the whole is greater than the sum
of the parts: by combining the outputs of a number of base models or algorithms, it is
possible to attain better classification results than can be achieved with any individual model
or algorithm. For purposes of ICESat-2 seafloor point classification, use of an ensemble is
particularly important, since: 1) as noted above, in contrast to the case with ALB, which is
typically acquired over small project areas, ATL24 is a global product, and, hence, manual
point editing is infeasible–the classification must be entirely automated; and 2) any individual
algorithm or model is unlikely to be able to handle the extremely wide range of seafloor types,
morphologies, depth ranges, water types, and cover types (e.g., coral, seagrass, macroalgae)
that exist throughout coastal and nearshore areas worldwide. For example, one algorithm or
model may work well in shallow estuaries, while another works well in shallow coral reefs, and
another in deeper, open water. By combining the outputs of diverse models and algorithms,
we can achieve good results across a broad range of conditions through a fully-automated
approach. Furthermore, the ensemble outputs classification confidence scores, which can be
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used alone or in combination with total propagated uncertainty (TPU) values to filter the
data.

Figure 1: ATL24 flow diagram of computational architecture

3.2 Data Dissemination

The implementation architecture chosen for ATL24 r001 will follow the standard approach for
the dissemination of the ICESat-2 mission products through the National Snow and Ice Data
Center (NSIDC). However, in the last few years NSIDC has pushed the products to the cloud
for modernized access to the data, which will be an additional pathway to ATL24 data access
for the scientific community. Both means of access will provide capabilities for geographical
and temporal sub-setting to the user. Additionally, for ATL24 specifically, there is also a
planned, parallel capacity for allowing on-demand and customized, science-ready bathymetry
product from ATL03 granules via SlideRule, a public web application programming interface
(API) for processing of science data in the cloud (Shean et al. 2023). ATL24 will eventually
present a family of data products, which collectively will be referred to as ATL24.x. This
ATBD describes the version referred to as the ”gold standard” version, ATL24.g, hosted by
NSIDC and available in Earthdata cloud, with the metadata for the granules registered in
NASA’s Common Metadata Repository (CMR). Subsequent versions, ATL24.s and ATL24.p
will leverage the full capabilities of SlideRule to provide a subsetting service and on-demand
product generation service using a Python client, Javascript client, or web map GUI. This
functionality will enable users to optimize the output data product for their particular science
need, resulting in truly ”science-ready” data. The descriptions of each planned ATL24.x
product goals and client service plans are listed below:
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ATL24.g The gold standard product will be generated by a private instantiation of SlideRule
running in the AWS US-West-2 data center. The granules will initially exist in SlideRule’s
private S3 bucket prior to transfer to NSIDC. Moving forward, the ATL24.g option will
exist in SlideRule as a client facing product with subsetting capabilities.

ATL24.s and ATL24.p Web-services will be provided by the public instantiation of Slid-
eRule. Includes interfacing to the client, and reading the ATL24 granules from S3.

Graphical web interface The interface will be hosted in AWS S3 and served by Amazon’s
CloudFront at https://client.slieruleearth.io

The gold standard ATL24 product will be generated on a per-granule basis using SlideRule
and following the prescribed nearshore/coastal bathymetry mask to coordinate and execute
the full suite of contributing classification algorithms. This gold standard data product will
be a global resource using the most current algorithmic workflow and will be available to
users via sub-setting. Ultimately, the ATL24.g product provides the most robust algorithm
parameterization for global applications but does not provide the option for users to adjust
the input parameters. Figure 1 shows the execution flow from an incoming ATL24.g request
all the way to the output of a gold standard h5 granule.

3.3 ATL24 ATBD Sections

ATL24 primary input is ATL03, using the geolocated photon point cloud to determine
classifications of sea surface and seafloor. The many algorithms combined to provide a
robust means to signal finding and photon labeling are presented in Section 4.1. This section
describes 7 independent methods that each produce predictive classes within the granule
and then describes an innovative ensemble machine learning model that provides the final
label. Additional description in Section 4.1 is given for the specific input variables and
output variables of the ATL24 workflow. After the photons are labeled, there is a correction
applied to adjust the spatial coordinates for refraction at the air-water interface. The theory
and application of this correction is also provided in Section 4.1. The performance of the
algorithm/workflow output is discussed in Section 5. This section includes both the quality
or accuracy of the photon labels but also the accuracy of the bathymetric heights relative to
independent data sources. Section 5 also contains the approach to modeling the uncertainty
of the ATL24 output, which is a parameter included on data product. Section 6 provides the
approach to ATL24 production and dissemination, as this product will be the first provided
as an on-demand, science ready product for the user as a web service. Section 6 will provide
descriptions of SlideRule and both the deployment and development environments. The
appendices contain the many acronyms used in the ATL24 ATBD lexicon.
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4 Technical Considerations

4.1 Scientific Theory

The scientific theory underlying bathymetric lidar, including ICESat-2 bathymetry, is well-
developed, based on over five decades of work, starting with the pioneering experiments of
Hickman and Hogg 1969. While the extension from airborne to spaceborne bathymetric lidar
is new to ICESat-2, most of the underlying theory and physics remain the same.

The operational principles of bathymetric lidar are largely equivalent to those of topo-
graphic lidar, with one major difference: namely, the laser light must penetrate the water
column, reach the seafloor with sufficient pulse energy to register a detectable return signal
(which is also a function of seafloor reflectance at the laser wavelength), and propagate back
to the sensor, where it can be detected and used to compute spatial coordinates of the seafloor
point.

Water clarity is consistently the limiting factor in bathymetric lidar. For a photon-counting
system, such as ATLAS, an equation for the strength of the received signal, in terms of
number of photoelectrons is given in N. Forfinski-Sarkozi and C. Parrish 2016 :

ηbot = ηqηtηr
Et

hν
ρ cos(αt)

Ar

π(Ra +Rw)2
(1− rint(αs))

2T 2
λe

−2cRw (1)

where ηq is the detector quantum efficiency, ηt is the transmitter optical efficiency, ηr
is the receiver optical efficiency, Et is beam transmit energy, h is Planck’s constant, ν is
the photon frequency, ρ is the reflectance of the seafloor and cover (e.g., coral, seagrass,
macroalgae), αt is the incidence angle on the seafloor, Ar is the receiver telescope lens’ area,
Ra is the range from the satellite to the water surface, Rw is the in-water range, rint is the
reflectance of the water surface, αs is the incidence angle on the seafloor, T is the atmospheric
transmittance (one way), and c is the effective attenuation coefficient. Most of the variables
in Eq. 1 are specular (i.e., a function of wavelength), but since we are only interested in a
single wavelength (532 nm, the wavelength of ATLAS’s laser), the subscript λ is omitted
from the variable names.

Importantly, the received signal strength depends strongly on the water clarity, which
is contained within the effective attenuation coefficient, c, an exponential term in Eq. 1.
Ignoring sensor-dependent factors, c can be reasonably approximated by the diffuse attenuation
coefficient of downwelling irradiance, Kd, an apparent optical property:

Kd = −
1

E(λ)

∂E(λ)

∂z
(2)

where E is downwelling irradiance in watts per square meter, z is depth, and Kd has units
of inverse meters.

Beyond a certain depth that is typically referred to as the extinction depth, which is a
function of Kd, as well as system-dependent parameters contained in Eq. 1, the received
optical power drops below the detection threshold, and bathymetric measurement is infeasible.
For ICESat-2 bathymetry, the extinction depth can often be approximated visually as the
point at which the seafloor returns peter out in a profile plot, such as Figure 2. In this
particular example, the seafloor points begin to approach extinction at approximately 30 m
(non-refraction-corrected).
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Figure 2: Profile of ICESat-2 ATLAS along-track photon returns, with orthometric heights, based
on the EGM08 geoid model. Here, water surface, seafloor, and land points have been manually
labeled. Refraction correction has not yet been applied, so the seafloor points have a deep bias.

With respect to water clarity, ICEsat-2 has a distinct advantage, compared to airborne
bathymetric lidar. Water clarity in many regions is highly spatially and temporally variable,
depending on factors including general geomorphic characteristics, wind and wave climate,
salinity, precipitation and tide cycles, among many others.

With airborne bathymetric lidar, if some combination of the above factors are unfavorable
for water clarity, the mission may result in no bathymetry being collected. This can also
happen with an ICESat-2 overpass, but the revisit cycle provides many opportunities to
re-observe at different times and under different environmental conditions, increasing the
probability of obtaining usable bathymetry over the ICESat-2 data record.

Assuming the seafloor is detected, the geolocation of detected points can initially be the
same as for topographic lidar, but coordinate corrections then need to be applied, based on
the change in speed and direction of the laser light at the air water interface, a process known
as refraction correction. Roughly following the procedures used in airborne bathymetric lidar,
we start with return photon coordinates that assume topograpy, rather than bathymetry, and
then apply refraction correction. The initial coordinates are from ATL03: specifically, the
lat_ph, lon_ph, and h_ph in the /gtx/heights group.

4.2 ATL24 Input Variables

Table 2 captures each stage of the processing phase in the production of the ATL24 granule
and explains the significance of each step. Table 2 also lists the required inputs for that stage
with brief explanation. ATL03, the primary input, provides the heights above the WGS84
ellipsoid (ITRF2014 reference frame, through Release 06 of ATL03, after which ITRF2020
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will be used), the latitude, longitude, and time tag for every ATLAS photon detection. These
values are the primary input to ATL24 but many ATL03 specific parameters are passed
through the processing workflow and attached to the ATL24 product for user utility and
convenience. ATL03 parameters are all defined in the dedicated Algorithm Theoretical
Basis Document and the Neumann et al., 2019 publication on the product (T. A. Neumann
et al. 2019b). Table 2 provides a broad look at independent processing stages within the
ATL24 workflow with the associated input data required to provide an understanding of
the interdependencies of the algorithm on initial data products and intermediate products
produced within the computational pipeline.

Table 2: ATL24 input variables and processing details within each stage of the product production

Stage Processing Input Products

Client Request ATL24.g - accept an incoming
HTTP request ATL03 granule name

Input Data and
Data Configura-
tion

ATL03/09 Granule Reader
- subset granules to bathymetry
mask

Photon Filtering - option-
ally filter photons based on
certain fields (e.g. quality_ph)

Global Bathymetry Mask - a
shapefile capturing all areas where
there is bathymetry detectable by
ICESat-2

ATL03 Granule - ICESat-
2 standard data product h5 file

ATL09 Granule - ICESat-
2 standard data product h5 file

Photon Classi-
fiers: Sea surface

CoastNet

Quantile Trees

OpenOceans++

ICESat-2 inputs

Trained ML models

Photon Classi-
fiers: Seafloor

CoastNet

Quantile Trees

C-SHELPH

OpenOceans++

BathyPathFinder

Median Filter

ICESat-2 inputs

Trained ML models

Sea Surface - some classifi-
cation algorithms require an
initial estimate of sea surface
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Ensemble Classi-
fication Ensemble

ICESat-2 Inputs

Trained ML models

Photon Classifications -
predicted sea surface (40), and
seafloor (41) photon labels
available from the classification
algorithms

Error Correction
Blunder Detection - heuristi-
cally evaluates each photon classi-
fication against list of checks

ICESat-2 input

Photon Classifications

Refraction Cor-
rection

Refraction Correction - calcu-
lates final depths of bathymetry
photons using refraction index and
surface heights

Refractive index of water
data layer

Uncertainty Cal-
culation

Uncertainty Calculation - cal-
culates the vertical and horizontal
uncertainty of each photon’s loca-
tion

ICESat-2 Inputs

VIIRS Kd490

Subaqueous Uncertainty
Look Up Tables

Photon Classifications

Final Outputs

ATL24 Granule Writer -
writes h5 file

Quality Checker - heuris-
tically evaluates each h5 file and
determines quality assessment

All previous outputs

Further description of the input components for the ATL24 processing workflow are listed
in Table 3. These include the other ICESat-2 data used in production of the product and the
independent data needed for processing implementation. An example is the refractive index of
water data layer which is a global mask produced for the refractive correction to the subaqueous
photon heights using temperature and salinity values from the E.U. Copernicus Marine Service
Multi Observation Global Ocean 3D Temperature, Salinity, Height, Geostrophic Current, and
Mixed Layer Depth (MLD) dataset. Another example is the bathymetry mask utilized as a
processing guide for where bathymetry is both present and ATLAS is capable of observing it
based on previous studies Christopher E. Parrish, L. A. Magruder, et al. 2019.
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Table 3: ATL24 component input for processing pipeline

Item Description
ATL03 Granule ATLAS/ICESat-2 Level 2a global geolocated photon data

ATL09 ATLAS/ICESat-2 Level 3a calibrated backscatter profiles and at-
mopsheric layer characteristics

Global
Bathymetry
Mask

Used to spatially subset the ATL03/ATL09 granules prior to initi-
ating the ATL24 workflow.(Note: this is also referred to internally
as the “search mask”)

VIIRS Kd490
NOAA product from the Visible Infrared Imaging Spectrometer to
provide a diffuse attenuation coefficient at 490 nm to the uncertainty
calculation.

Uncertainty
Look up Table

Generated by an offline Monte Carlo simulation; used with turbidity,
windspeed (ATL09), and photon depth to generate vertical and
horizontal subaqueous geolocation uncertainty.

Refractive Index

Global data product using a seasonal value using temperature and
salinity data from the E.U. Copernicus 2022 Multi Observation
Global Ocean 3D Temperature Salinity Height Geostrophic Current
and MLD dataset datasets

4.3 ATL24 Output Variables

Table 4: ATL24 output variables for each stage of the product production

Stage of Origin Output Variables
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ICESat-2 inputs

Per Beam, Photon-level Variables (_ph)

lat_ph - (deg) latitude computed from the ECEF
Cartesian coordinates of the bounce point

lon_ph - (deg) longitude computed from the
ECEF Cartesian coordinates of the bounce point

sigma_h - (m) ATL03 photon vertical aerial un-
certainty

delta_time - fractional seconds from ALTAS
epoch to laser fire associated with photon measurement

Per Granule Variables

wind_v - (m/sec) the wind speed at the center
photon of the subsetted granule; calculated from ATL09
met_u10m and met_v10m

Classifier input
parametrization

index_ph - unique index of photon in the given granule

index_seg - unique segment index

Ensemble

class_ph - photon classification: sea_surface (41),
bathymetry (40), other (1) or unclassified (0)

confidence - floating point value 0-1 based on
ensemble score for accuracy of predicted photon
classification

surface_h - orthometric height of the sea sur-
face at the location of the photon based on the EGM08
geoid model
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Refraction Correction

ellipse_h - (m) height of photon as measured from
ellipsoid surface of Earth (WGS84)

ortho_h -(m) height of photon as measured from geoid
of Earth (EGM08)

lat_ph - ITRF2014 (until release 07, when it
will be updated to IRTF2020) latitude of each received
photon (degrees north); computed from the ECEF
Cartesian coordinates of the bounce point

lon_ph - ITRF2014 longitude of each received
photon (degrees east); computed from the ECF Carte-
sian coordinates of the bounce point

Uncertainty Calcula-
tion

sigma_thu - (m) total horizontal uncertainty (1-sigma),
which is the square root of the sum of the squares of the
aerial and subaqueous horizontal uncertainty for each
received photon

sigma_tvu - (m) total vertical uncertainty (1-
sigma), which is the square root of the sum of the
squares of the aerial and subaqueous vertical uncertainty
for each signal photon

Data Flags

invalid_kd - This binary flag indicates VIIRS Kd490
data is available (= 0) within the required timespan
(=/- 1 day) from the ATL03 photon time-tag or when it
is not available (= 1)

low_confidence_flag - This binary flag indi-
cates when the confidence parameter value is greater
than 0.6 (= 0) or when it is lower than 0.6 (= 1)

night_flag - This binary flag indicates when
the data was acquired in the absence of sunlight (= 1)
in in the presence of sunlight (= 0)

sensor_depth_exceeded - This binary flag in-
dicates when the ATL24 photon depth is a reasonable
depth (= 0) or outside of the sensor capability (= 1)

invalid_wind_speed - This binary flag indi-
cates the absence ( = 1) of ATL09 wind speed or when
a wind speed estimation is avilable (= 0). Wind speed
is used in the uncertainty estimation.
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4.3.1 ATL24 Data Structure and Naming Conventions

The naming and internal organization of the final HDF5 file for each ATL24 granule will
match the conventions used on the rest of the project. Each granule will also have the naming
convention similar to the other ICESat-2 data products. Each variable within the name
(place holders) are described in Table 5. Please note that there are two sets of version and
revision numbers that represent both ATL03 input version and revision and then the version
and revision of ATL24.

ATL24_[yyyymmdd][hhmmss]_[ttttccss]_[vvv_rr]_[vvv_rr].h5

Table 5: ATL24 naming convention

Variable Description
ATL24 ICESat-2 Level 3 Global nearshore and coastal bathymetry

ATL09 ATLAS/ICESat-2 Level 3a calibrated backscatter profiles and at-
mopsheric layer characteristics

yyyymmdd Year, month and day of data acquisition
hhmmss Data acquisition start time, hour, minute, and second (UTC).

tttt Four digit Reference Ground Track number. The ICESat-2 mission
has 1,387 RGTs, numbered from 0001 to 1387.

cc

Cycle Number. Each of the 1387 RGTs is targeted in the polar
regions once every 91 days. The cycle number tracks the number of
91-day periods that have elapsed since ICESat-2 entered the science
orbit.

ss
Segment number. ATL03 data files are segmented into approxi-
mately 1/14th of an orbit. Segment numbers range from 01-14.
Note that some segments may not be available.

vvv_rr ATL03 Version and revision number
vvv_rr ATL24 Version and revision number

4.4 Classification Algorithms

In many regards, the most important and challenging step in the ATL24 workflow is the
classification of sea surface and seafloor (bathymetric bottom) returns in input ATL03 point
clouds. In airborne bathymetric lidar, significant human analyst time is typically spent on this
step. For ATL24, this step is even more challenging, because: a) it must be fully automated,
b) ICESat-2 ATL03 granules are generally noisier than airborne bathymetric lidar, due to
ATLAS’s photon-counting design, and c) while airborne bathymetric lidar projects typically
cover a fairly limited spatial extent, the ATL24 sea surface and seafloor classification must
perform well for coastal and nearshore regions around the world, encompassing a wide range
of seafloor morphologies, substrates, depth ranges, and cover types (e.g., coral, seagrass,
macroalgae).

Of the considerations noted above, it is the exceptionally wide range of subaqueous envi-
ronments that poses the most serious challenges for entirely automated seafloor classification.
Any individual algorithm or model is unlikely to be able to handle the full extent of seafloor
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types, morphologies, depth ranges, water types, and cover types that exist throughout coastal
and nearshore areas worldwide. The ATL24 workflow addresses this hurdle by utilizing an
ensemble of classification models. The overarching idea is that the whole is greater than the
sum of the parts: by combining the outputs of a number of base models or algorithms, it
is possible to attain better classification results than can be achieved with any individual
model or algorithm. By combining the outputs of diverse models and algorithms, we can
achieve good results across a broad range of conditions through a fully-automated approach.

It is important that the predictions of the individual models are distinct in their methods.
This aspect is crucial as models with error modalities that are strongly correlated are more
difficult to detect and correct. We have thus chosen an ensemble of models, each described
below, that satisfy these requirements.
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4.4.1 CoastNet Classification

Each ground track was arranged as a 2D raster representing the along-track profile. Fixed
sized samples were then selected from this raster. Each pixel in the raster was 4 meters wide
and 1 meter tall, and samples were 65×65 pixels (an odd numbered size was chosen so that a
pixel was centered within the sample), resulting in 260×65 meter samples (fig. 3). Training
samples pixels were colored black if the pixel contained a photon and were colored white
if the pixel did not contain a photon. Each sample was labeled according to the sample’s
central photon label (shown in red). The task of the network was then to determine if each
sample contained a noise photon at its center (colored gray in the figure), a bathymetry
photon (magenta), or sea surface photon (cyan).

Figure 3: a) Samples are centered on photons. b) Each sample is a 65×65 pixel image raster, where
each pixel is 4 meters wide and 1 meter tall for a total coverage area of 260×65m. The sample’s
ground truth label is the label of the photon in the center of the sample: sea surface, bathymetry, or
other.

The machine learning network employed for the model was a ’deep-residual’ network, a
type of convolutional neural network (CNN) designed for network architectures with significant
depth, often comprising tens or hundreds of layers.

CNNs are widely used in image recognition tasks, as they can effectively extract spatial
features from input images. The deep-residual network architecture addresses a common
problem in deep CNNs known as the ’vanishing gradient problem,’ where gradients become
exceedingly small in deeper layers, making it difficult to train the network effectively.

To overcome this, the deep-residual network introduces ’skip connections’ or ’residual
connections,’ which directly connect layers in the network with layers further down the
architecture. These skip connections enable gradients to flow more directly from the output
layers to the earlier layers, facilitating efficient training and alleviating the vanishing gradient
problem.

The deep-residual network has demonstrated superior performance on various image
recognition tasks, including image classification and object detection. Its ability to handle
complex and high-dimensional data makes it a powerful tool for various computer vision
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applications.
In our experiments, we opted to build separate sea surface and bathymetry models instead

of a single model that classified both. This helped us mitigate class imbalance and allowed
for separate analysis of classification performance for each class. Bathymetry photon counts
are considerably lower compared to noise and sea surface, which can significantly impact the
scores depending on the chosen metric. This aspect will be discussed in more detail later.

Algorithm 1 Coastnet Classification Algorithm
Input: ICESat-2 granule
Output: Photon label predictions
G← granule photons
M ← pretrained model
for gi ⊆ G, ci ⊆ context photons centered at gi do

Ri ← 63 ×63 raster formed from ci
predictioni ←M(Ri)

end for
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4.4.2 BathyPathFinder Classification

BathyPathfinder, first described in Corcoran et al. 2024, is a bathymetric surface extraction
algorithm that leverages techniques from network analysis in order to extract a representative
sample of seafloor photon returns from an ATLAS profile containing bathymetry. Unlike other
common methods, BathyPathfinder does not rely on the spatial density of neighboring photons
in order to perform classification. Instead, following sea surface removal, all subaqueous photon
returns are organized into a weighted, undirected graph G = (V,E), where V represents
the set of photons (vertices) and E represents the graph connections (edges). The edges
are weighted proportional to the distance between the pairs of photons they connect. This
process is done using the KD Tree algorithm (Bentley 1990), with the value k representing
the number of neighbors connected to each subaqueous photon.

Following the graph generation step, edges with outlier weights (i.e., those exceeding a
threshold percentile) are pruned from the tree. The default value for this threshold, n, is
set to the 99th percentile, based on previous empirical results. The algorithm then selects
pairs of “target” and “source” photons, which represent photons at either end of a contiguous
bathymetry surface. Many techniques for target and source selection can be employed,
however, for the sake of simplicity, the algorithm uses the photons with the median elevations
within 5m of the bathymetric surface edges.

Finally, using the target and sources pairs, the algorithm performs an optimal “least-cost”
network traversal using the A∗ algorithm (Hart et al. 1968). The photons used by A∗ to
connect the target and source photons are then extracted and classified as bathymetry. In
the case of discontinuous bathymetry, due to occlusion of the sensor or sensor saturation,
the KD Tree may generate two or more unconnected subgraphs, denoted S1, S2, ..., Sm. In
this situation, Bathy Pathfinder will automatically separate these subgraphs and apply the
remaining steps of the algorithm to each Si (i = 1, 2, ...,m) individually. Once the bathymetric
surface photons have been extracted, they are combined to recreate the original, segmented
bathymetric surface. A segment of the BathyPathFinder pseudo code is found in (Algorithm
2).

Algorithm 2 Bathy PathFinder Algorithm
Input: Point Cloud, Sea Surface n, k
Output: Bathymetry
G← KD Tree(Point Cloud \ Sea Surface)
G← Prune(G, percentile=n)
Bathymetry ← [ ]
for Si ⊆ G do

ti, si ← TargetSourceSelection(Si)
Path ← A∗(Si, si, ti)
Bathymetry ← Append(Bathymetry, Path)

end for
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4.4.3 OpenOceans++ Classification

OpenOceans++ (OO++) is loosely based on an adaptable, opensource approach developed at
University of Texas at Austin called OpenOceans (https://github.com/jonm3D/OpenOceans).
The overarching inspiration of OO++ is from historical full-waveform lidar signal processing
techniques (Leigh and L. A. Magruder 2016, L. A. Magruder 2010) but implemented in
C++. OO++ is designed to leverage a vertical histogram approach for classification of sea
surface and sea floor photons. At the OO++ basic level the algorithm is calculating ’pseudo-
waveforms’ from the histograms using a Gaussian fit from the identified peak magnitudes,
modes and full-width-half-maximum values in the ATL03 geolocated photon input. These
Gaussian distributions are subsequent to an along-track binning process to partition the
photons. Below is the description of the general OO++ algorithm that details how the
histogramming and waveform fitting is performed, in addition to several filters and quality
checks implemented. There are separate algorithm descriptions provided to address both the
sea surface and seafloor classifications that use probability mass functions from the input
photon elevations but differ in statistical analyses and data filtering steps. After algorithm
completion, all photons will be labeled as ’sea surface’ or ’bathymetry’, and all photons will
contain both a surface and a bathymetry elevation estimate, even in places where no nearby
sea or seafloor surface was detected. This allows the user to obtain estimates of bathymetry
and sea surface without having to specify how far away (horizontally) any particular photon
is from a labeled bathymetry or surface photon.
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Algorithm 3 OO++ General Algorithm
Input: ATL03 track consisting of a list of photons. Each photon contains an along-track distance,

x, and an elevation, z.
Output: ATL24 track, where each photon has an associated classification (unclassified, sea surface,

or bathymetry), an estimate of the sea surface elevation at that photon’s along-track distance,
and an estimate of the bathymetry elevation at that photon’s along-track distance.

1. Compute a surface elevation estimate for the entire collection of photons. This estimate is
used as an input to the surface and bathymetry detection algorithms in steps 3b and 3d.
(a) Filter photons that are beyond a threshold distance (e.g. ±20 meters) from zero mean

sea level elevation
(b) Calculate the median elevation of the filtered photons
(c) Filter the photons again that are beyond a threshold distance (e.g. ±1 meter) from the

median elevation
(d) Compute the median elevation of the second set of filtered photons. This is the initial

surface estimate for the entire set of photons.
2. Partition the photons into along-track bins whose boundaries are spaced at, for example, 10

meter intervals.
3. For each along-track bin

(a) Identify sea surface photons in the bin. See Algorithm 4 below for a description of the
sea surface identification algorithm.

(b) Compute the surface estimate for this bin by taking the average of all photon elevations
identified as sea surface. If no surface photons are detected in the bin, the surface
elevation estimate for the bin is 0.0 meters.

(c) Identify bathymetry photons in the bin. See Algorithm 5 below for a description of the
bathymetry identification algorithm.

(d) Compute the bathy estimate for this bin by taking the average of all photon elevations
identified as bathymetry. If no bathymetry photons are detected in the bin, the bathy
elevation estimate for the bin is 0.0 meters.

4. Apply a Gaussian smoothing filter based upon the sea surface estimates associated with each
bin. The standard deviation of the sea surface smoothing function is large (for example, 200
meters) because the ocean surface typically does not change drastically over short along-track
distances.

5. Apply a Gaussian smoothing filter to the bathymetry estimates associated with each bin.
The standard deviation of the bathymetry smoothing function is smaller than the sea surface
standard deviation, for example, 100 meters.

6. Assign surface and bathymetry estimates at each photon according to the smooth estimates
in steps 4 and 5.
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Algorithm 4 OO++ sea surface identification algorithm
Input: List of photons all corresponding to a single along-track bin. Sea surface estimate for the

entire track.
Output: List of photon indexes identified as sea surface.

1. Construct a probability mass function (PMF) from the input photon elevations.
2. Smooth the PMF with a Gaussian filter, (e.g. stddev = 0.5 meters)
3. Get a list of PMF peaks
4. Eliminate peaks from the list that are below a prominence threshold (e.g. 0.01) and are too

close to adjacent peaks (e.g. less than 2 vertical bins).
5. Using the shape of the input sea surface estimate (mean and variance) determine the valid

range of sea surface estimates. E.g. ±3 standard deviations from the sea surface mean.
6. Eliminate peaks from the list that fall outside of the valid range of sea surface estimates

computed in the preceding step.
7. Of the remaining peaks in the list, choose the two that contain the most mass. If no peaks

remain, return an empty list of photon indexes.
8. If the two peaks are close to one another in mass (e.g. within 30corresponding to the sea

surface. Otherwise, choose the peak with the most mass.
9. Compute the average and variance of the photons that lie within a certain elevation distance

(e.g. ±1 meter) from the surface peak.
10. Use this average and variance to select the indexes of all photons that lie within a threshold

number of standard deviations (e.g.: 2) from the average. These indexes are the return value
of the algorithm.

Algorithm 5 OO++ bathymetry identification algorithm
Input: List of photons all corresponding to a single along-track bin. Sea surface estimate for the

entire track.
Output: List of photon indexes identified as bathymetry photons.

1. Eliminate photons from the list that lie above the sea surface estimate for the track.
2. Construct a probability mass function (PMF) from the input photon elevations.
3. Smooth the PMF with a Gaussian filter, (e.g. stddev = 0.5 meters)
4. Get a list of PMF peaks
5. Eliminate peaks from the list that are below a prominence threshold (e.g., 0.01) and are too

close to adjacent peaks (e.g., < 2 vertical bins).
6. If no peaks remain, return an empty list of photon indexes.
7. Select the peak with the highest elevation.
8. Compute the average and variance of the photons that lie within a certain elevation distance

(e.g., ±1 meter) from the bathy peak.
9. Use this average and variance to select the indexes of all photons that lie within a threshold

number of standard deviations (e.g., 2) from the average. These indexes are the return value
of the algorithm.
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4.4.4 Median Filter Classification

The median filter method is described in the paper Ranndal et al. 2021a as simple empirical
method for extracting bathymetry profiles from ICESat-2. The technique was tested on
four tracks over the Heron Reef, Australia and a region north-west of Sisimiut, Greenland.
This method shows good success in extraction of the bathymetric signal in good conditions
(e.g. relatively low turbidity) and is computationally inexpensive. This approach, along
with the OpenOceans algorithm (section 4.4.3 and C-SHELPh (section 4.4.5), are the three
classification algorithms that do not utilize machine learning. The ATL24 implementation of
the median filter approach s as follows:

1. All ATL03 photon ellipsoid heights are converted to orthometric heights using the
EGM08 geoid model.

2. Using the input sea surface classifications provided by QTrees (section 4.4.6), all photons
more than 1.5 m below the sea surface median are kept for subsequent processing.

3. Windows for every 50 photons are created and the corresponding median elevation for
each window is calculated. Any photon in a window with an elevation that is more than
4m different from the median is removed.

4. Another moving median is calculated but this time with a window size of 30 photons.
This time, a moving standard deviation of elevations is calculated and any photons with
an elevation greater than 0.6m from the median AND a standard deviation greater than
1.2 m are removed.

5. Now the retained photons are separated into 0.001 degrees latitude ( 100m) segments.
For each segment, if there are more than 14 photons, the data are assumed to be
bathymetry.
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4.4.5 C-SHELPh Classification

The C-SHELPh (Classification of Sub-aquatic Height Extracted Photons) algorithm was
developed by Thomas et al. in the effort to provide an open source tool for producing
bathymetric maps (N. Thomas et al. 2022). The work, published in 2022, was one of the first
techniques for automating the extraction of ICESat-2 shallow-water, regional bathymetry.
The initial success of the approach was demonstrated at the Great Bahamas Bank around
the island of Andros, Bahamas and included 224 ICESat-2 tracks.

At its core, C-SHELPh detects the dense clustering of photons as typically these clusters
are indicative of surface returns. The density values are determined across a user specified
grid with the default values being 0.5 m in the vertical direction and 10 m in the horizontal
direction. This gridding convention provide surface heights and along-track latitudes. The
photon clusters around a height of 0 m are labeled to be the ocean surface photons and
surface height is estimated to be the median value of cluster. Photon clusters that occur
below the ocean surface value are identified via evaluation per-grid-cell basis relative to user
defined thresholds of the signal to noise. C-SHELPh proved very successful in the Caribbean
environment as the water has fairly low turbidity, the depths range from 0-10 m and the
seafloor is highly reflective; all of which provide an ideal scenario for density driven signal
finding.

The ATL24 implementation of C-SHELPh bins photons into 0.001 degree along track
blocks and 0.5 meter vertical blocks. The number of photons in each block is counted and
then using these bin counts, a threshold is calculated based on the number of photons in all
the blocks. The threshold is defined as the nth percentile of photon counts per block where
n=0.5. Although CSHELPh has been used in the past to determine the sea surface, the
ATL24 usage takes the surface input from the Quantile Trees output (section 4.4.6).

The threshold is calculated for the 85% and 65% and if these are equal, or the 65%
threshold number of photons in a bin is less than five, the algorithm sets the required number
of photons in a bin for bathymetry prediction to occur equal to five.
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Algorithm 6 C-SHELPh Algorithm
Input: Point Cloud, Sea Surface n, k
Output: Bathymetry
binnedphotons← bin photons into 0.001 degrees along track, 0.5m vertical (Point Cloud \ Sea
Surface)
if thresh85 == threshn then

if thresh85 < 5 then
mincounts = 5

else
mincounts = threshn

end if
if threshn < 5 then

mincounts = 5
else

mincounts = threshn
end if

end if
Bathymetry ← [ ]
for bini ∈ binnedphotons do

if bini - photon count > mincounts then
Bathymetry ← Append(Bathymetry, bini photons)

end if
end for
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4.4.6 Quantile Trees Classification

Similar to the CoastNet algorithm, the Quantile Trees (or QTrees) algorithm arranges ground
track profiles as two dimensional profile images. At each photon in the track, the algorithm
will contstruct an image centered at the target photon. However, unlike the CoastNet
algorithm, the QTrees algorithm places the distribution of photons within each image column
into quantiles. N-quantiles are non-parametric descriptions of distributions that partitions a
set of observations into N bins. In our algorithm, N is typically set to 32 bins.

The quantile bins in each column of the image are then used as features to a supervised
learning algorithm. In our implementation, we use the extreme gradient boosted algorithm
XGBoost. So, for example, for a given photon, the image will typically be divided into nine
columns (an odd number so that the target photon lies within the center column). If we are
using N-quantiles with N=32, then there will be 9 x 32 = 288 features, plus the elevation of
the target photon, for a total of 289 input features. The algorithm will then train on ground
tracks from hundreds of labeled datasets to produce a model that can predict noise, sea
surface, and bathymetry labels for any given input ground track.

Figure 4: Example of the QTrees algorithm. Each vertical column of the image is partitioned
into N-quantiles. The quantile boundaries are then used as features, along with the target photon’s
elevation, which are used as inputs to an XGBoost classifier.
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Algorithm 7 QTrees Classification Algorithm
Input: ICESat-2 granule
Output: Photon label predictions
G← granule photons
M ← pretrained model
for gi ⊆ G, ci ⊆ context photons centered at gi do

Qi ← 288 quantile bin locations formed from ci
ei ← elevation of photon gi
predictioni ←M(ei, Qi)

end for
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4.4.7 Ensemble Classification

An ensemble is a meta-machine learning technique used to combine predictions from multiple
algorithms. Ensembles can generate predictions that are more accurate than the predictions
of each of the combined algorithms individually. The particular type of ensemble used by
ATL24 is a stacking ensemble. This method is different from a voting scheme because it
allows the model to learn which combinations of predictions produce the best results. For
example, one algorithm may be good at predicting bathymetry in certain environmental
conditions, while the others might be statistically divided between choosing bathymetry
versus sea surface labels for the given photons.

The ATL24 consists of a gradient-boosted decision tree (XGBoost) within a supervised
machine learning framework. XGBoost is also known as ”Extreme Gradient Boosting”. The
framework takes as input the photon classification predictions output from each of the
classification algorithms (Median Filter, C-Shelph, etc.) and incorporates them into the
decision tree model, which is then trained using hand-labeled water surface, bathymetry, and
noise photons as the ground-truth reference. Other features like photon depth and signal
confidence may also be used as model inputs. This technique allows the model to learn which
prediction to select from the inputs for any given context.

For example, the model may learn that certain combinations of input predictions produce
more accurate results than others. The model could also learn, for example, which algorithms
work better in deep versus shallow water, or when there is more or less background noise, and
then make its final prediction accordingly. These capabilities allow the model to make better
predictions than many other techniques, such as linear regression or voting. Ultimately, the
ensemble framework is configured to add any number of relevant input features in addition
to an unlimited number of base classification predictions as new algorithms become available.
However, as additional algorithm predictions are included, the ensemble model must be
retrained on the comprehensive feature space before implementation.

Algorithm 8 Ensemble Classification Algorithm
Input: ICESat-2 granule, Photon label predictions from each algorithm
Output: Revised photon label predictions
G← granule photons
P ← photon predictions from each algorithm
M ← pretrained model
for gi ⊆ G do

pi ← P’s length 7 vector of predictions for photon i
ei ← elevation of photon gi
predictioni ←M(pi, ei)

end for
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4.4.8 Blunder Detection

Blunder detection is a series of simple post-processing checks. These checks ensure that the
photon classification predictions and elevation estimates make logical sense.

Prior to blunder detection, each photon has already been labeled as one of unclassified,
sea surface, or bathymetry. In addition, each photon has an associated sea surface estimate
and bathymetry depth estimate at that photon.

The checks that are performed are:

1. Surface elevation check: Ensure that photons labeled as sea surface are close to the sea
level estimate. Photons that are not within, for example, ±30 meters of the sea level
estimate at that photon are relabeled as unclassified.

2. Bathymetry elevation check: Photons labeled as bathymetry are relabeled as unclassified
if they are deeper than, for example, 100 meters below the sea level estimate at that
photon.

3. Bathymetry relative elevation check: Photons labeled as bathymetry are relabeled as
unclassified if the photon’s elevation is greater than the sea surface estimate at that
photon.

4. Surface range check: Photons that are labeled as sea surface must be within some
nominal range (e.g. ±5 meters) of the sea surface elevation estimate at that photon.

5. Bathymetry range check: Photons labeled as bathymetry must be within some nominal
range (e.g. ±5 meters) of the bathymetry elevation estimate at that photon.

Figure 5: Blunder detection example. Some bathymetry predictions (magenta) are reclassified
(black) if they are not close to the bathymetry elevation estimate (blue). Likewise, some sea surface
predictions (cyan) are reclassified (black) if they are not close to the sea surface elevation estimate
(green, mostly occluded by cyan photons).
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Algorithm 9 Blunder Detection Algorithm
Input: ICESat-2 granule, ensemble predictions
Output: Modified predictions, sea level estimates, bathymetry elevation estimates
G← granule photons
P ← ensemble predictions
for iteration ⊆ {1, 2, 3} do

S ← sea level elevation estimates
B ← bathymetry elevation estimates
for gi ⊆ G, pi ⊆ P , si ⊆ S, bi ⊆ B do

if pi == surface AND gi elevation is not in ±30.m range then
ci ← unclassified

else if pi == bathymetry AND gi elevation is not in 0.0m, -100.0m range then
ci ← unclassified

else if pi == bathymetry AND gi elevation > si then
ci ← unclassified

else if pi == surface AND gi elevation is not in range ±5.0m of > si then
ci ← unclassified

else if pi == bathymetry AND gi elevation is not in range ±5.0m of > bi then
ci ← unclassified

end if
end for

end for
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4.5 Refraction Correction

Refraction correction is a critical step in which the change in direction and speed of laser light
at the air-water interface are accounted for in computing corrected coordinates of seafloor
points. If refraction correction is not applied, large errors will exist in the vertical and
horizontal coordinates of bathymetric points. The vertical error is the larger of the two, being
approximately 25% of the uncorrected depth (Christopher E. Parrish, L. A. Magruder, et al.
2019; Lambert and Christopher E Parrish 2023). The direction of the vertical component of
the refraction correction is up (i.e., corrected bathymetric points will be at a higher elevation,
or, equivalently, a shallower depth). Meanwhile, the magnitude of the horizontal component
of the refraction correction is approximately 0.44D tan(θi), where θi is the off-nadir angle of
the beam and D is the uncorrected depth. The direction of the horizontal correction is in
towards the satellite’s nadir point. The refraction correction algorithm used in ATL24 is
the one introduced in Christopher E. Parrish, L. A. Magruder, et al. 2019 with a few minor
modifications.

An important variable in the refraction correction is the index of refraction of water. In
general, the index of refraction of seawater is a function of salinity, temperature, wavelength,
and pressure (Austin and Halikas 1976; Quan and Fry 1995). For ATL24 bathymetry, the
wavelength is fixed, based on ATLAS’s wavelength of 532 nm, and, for the depth ranges in
which ICESat-2 bathymetric measurement is feasible, it is reasonable to assume atmospheric
pressure (Quan and Fry 1995). However, because of the large variation in salinity and
temperature throughout the global ocean, large errors would result from using a single
value of nw(532) everywhere. Hence, we developed a global refractive index layer using
temperature and salinity data from E.U. Copernicus 2022 Multi Observation Global Ocean
3D Temperature Salinity Height Geostrophic Current and MLD dataset (Stephanie Guinehut
et al. 2012, Guinehut et al. 2021) and the empirical equation of Quan and Fry 1995, simplified
to consider only the wavelength of 532 nm. This resulted in a 1/4° resolution grid of the
refractive index for use in the ATL24 refraction correction (Figure 6). These procedures are
described in J. T. Dietrich and Christopher E Parrish 2025.

Many other versions of ICESat-2 refraction correction algorithms have been presented
and discussed in the published literature. In fact, interestingly, after classification of seafloor
points, refraction correction has been perhaps the most widely-researched aspect of ICESat-2
bathymetry processing, based on the number of published papers. Some of the proposal
enhancements have include accounting for water surface slope and fluctuation of the water
surface (Ma et al. 2020), wave effects (Xu et al. 2020), and modeled water surfaces and ray
tracing (Zhang et al. 2022), among others. These refraction corrections are substantially
more computationally complex than the one implemented in the ATL24 workflow, and it is
not clear whether they can be sufficiently automated and robust to provide good results in all
coastal locations around the world. However, for users who wish to customize the refraction
correction, ATL24.p will provide the ability to do so, including through use of a custom water
surface model.

Pseudocode for the refraction correction is given below in Algorithm 10.
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Figure 6: Index of refraction layer computed from the E.U. Copernicus 2022 Multi Observation
Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD dataset.

Algorithm 10 Refraction Correction Algorithm
Input: bathymetric point latitude (lat_ph), longitude (lon_ph), and height (h_ph) from ATL03,

water surface model (W ), refractive index of air (na), refractive index of water (nw), reference
elevation from ATL03 (ψ), reference azimuth from ATL03 (κ)

Output: Coordinate corrections in easting, northing and height (∆E, ∆N , ∆Z)
for bathymetric point in granule segment do

Angle of incidence (θ1) ←π/2− ψ
Angle of refraction (θ2) ←sin−1(nasin(θ1)/nw)
Depth (D) ←W - h_ph
Uncorrected slant range (S) ←D/ cos(θ1)
Corrected slant range (R) ←Sna/nw
Distance between corrected and uncorrected points (P ) ←

√
R2 + S2 − 2RScos(θ1 − θ2)

Bathymetric point altitude (β) ←π/2− θ1 − sin−1(R sin(θ1 − θ2)/P )
Correction in cross-track direction (∆Y ) ←P cos(β)
Correction in vertical direction (∆Z) ←P sin(β)
Easting correction (∆E) ←∆Y sin(κ)
Northing correction (∆N) ←∆Y cos(κ)

end for

The parameters in the refraction correction algorithm are depicted graphically in Figure 7.
Here, the red point is the uncorrected point, while the green point is the refraction-corrected
point.
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Figure 7: Graphical illustration of variables in refraction correction algorithm. The red point is
the uncorrected bathymetric point, and the green point is the refraction corrected point. Adapted
from Christopher E. Parrish, L. A. Magruder, et al. 2019

.
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Figure 8: NOAA BlueTopo data set, which will be used as the reference data set in testing the
accuracy of ATL24.

5 Performance Assessment and Validation

The accuracy of ATL24 will be tested using the NOAA BlueTopo data set, which is a
compilation of best-available bathymetric data for U.S. waters, maintained and distributed
by NOAA’s Office of Coast Survey (OCS) through the National Bathymetric Source program
(Rice et al. 2023). The reasons for using BlueTopo as the reference for the accuracy test are: 1)
it is referenced consistently to a known vertical datum; 2) it has better spatial resolution than
many other publicly-available data sets; 3) being produced and maintained by NOAA OCS
for supporting NOAA’s nautical charting mission, it was created with a focus on accuracy,
datum consistency, and reliability; and 4) it is available via an AWS S3 bucket with code
for access provided on a public GitHub repository, facilitating use in SlideRule ATL24. A
disadvantage is that, while ATL24 has global coverage, BlueTopo currently only covers the
U.S. East Coast and Gulf Coast. However, despite the limited geographic extent, BlueTopo
was determined to be the best publicly-avaiable bathymetric data set for use as a reference
data set in testing the accuracy of ATL24. Other publicly-available bathymetric data sets,
such as ETOPO2022, CUDEM, and GEBCO 2023, have highly variable (and, in many cases,
unknown) accuracy, which, in some places, is worse than the accuracy of ATL24, making
them unsuitable as reference data sets for testing the accuracy of ATL24. Furthermore, the
vertical datum of other data sets is not always known. Statistics to be computed in the
accuracy test include: root mean square error (RMSE), R2 of a linear regression of BlueTopo
on ATL24, mean error (i.e., bias), standard deviation, and minimum and maximum (signed)
errors. To the extent possible, the accuracy test will follow the procedures in the American
Society for Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards
for Digital Geospatial Data, 2nd Edition (Abdullah 2023).
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5.1 Uncertainty Modeling

The ICESat-2 total propagated uncertainty (TPU) model leverages the project team’s work
on the cBLUE (comprehensive bathymetric lidar uncertainty estimator) software tool and
subaqueous TPU model, which was initially developed for airborne bathymetric lidar (Eren
et al. 2019). The TPU model underlying cBLUE breaks the uncertainty into two components:
subaerial (comprising everything above the water surface) and subaqueous (water surface to
seafloor). As applied to ICESat-2 bathymetry, this approach is illustrated in Fig. 9.

The subaerial vertical uncertainty for ATL24 is obtained from the sigma_h parameter
in the /gtx/geolocation group in ATL03, which is an estimate of the total photon height
uncertainty. While sigma_h is currently a static parameter, based on information supplied
by the the ICESat-2 Project Science Office (PSO), in the future, it will vary on a point-by-
point basis. The horizontal (or ”planimetric”) component of the subaerial model uses the
sigma_along and sigma_across variables from the ATL03 /gtx/geolocation group.

The subaqueous component of the TPU model utilizes Monte Carlo ray tracing. Thousands
of simulated rays are generated and refracted at a modeled sea surface. These simulated rays
then undergo scattering within the water column, leading to an ensemble of plausible 3D
spatial coordinates of detected bathymetric points, roughly within an ”uncertainty ellipsoid”
as depicted in Fig. 9. The planimetric and vertical spread of these points is then used
to quantify the positional uncertainty. Because the Monte Carlo ray tracing requires long
computation times, it is not run in real time at the point of generating a bathymetric data
set. Instead, it is run in advance for many different combinations of wind speed and turbidity,
with the latter represented by the diffuse attenuation coefficient of downwelling irradiance,
Kd. The outputs of these runs are used to generate a set of look up tables (LUTs), each
storing the parameters of a quadratic fit of depth to depth uncertainty for a given wind speed
and Kd. The Monte Carlo ray tracing is based on the work of Curtis D. Mobley 1999, and
full details are given in Eren et al. 2019.

The subaqueous uncertainty component is applied only to photons that are below the
estimated sea surface, and not labeled by the ATL24 classifier as sea surface photons. The
uncertainty model has a tendency to underestimate vertical uncertainty in very shallow
waters. Under the assumption that there is a minimum level of uncertainty associated with
the laser pulse entering the water, we establish a minimum subaqueous vertical uncertainty
of 0.10m. If a given photon has no valid wind speed or Kd value, the maximum value for that
parameter is used to retrieve LUT coefficients and offsets. When this happens, the invalid_kd
or invalid_wind_speed flags are set to 1 to indicate invalid Kd or wind speed respectively.

As the last step in the uncertainty modeling process, the horizontal and vertical subaerial
and subaqueous uncertainties are added in quadrature to compute the horizontal and vertical
seafloor TPU.

Pseudocode for the uncertainty algorithm is given below:
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Algorithm 11 Uncertainty Algorithm
Input: Kd, wind speed, orthometric height (OH), pointing angle, sea surface height (SH), along

track and across track uncertainty coefficients and offsets, ATL24 classification, and along-track
(sigma_along), across-track (sigma_across), and vertical uncertainties (sigma_h) from ATL03

Output: THU, TVU
Depth = SH - OH
for Di ∈ Depth and Ci ∈ Classification do

if Di < 0 and Ci ! = 40 then
Vertical uncertainty coefficients and offsets (Av, Bv)← Kd, wind speed, pointing angle
Horizontal uncertainty coefficients and offsets (Ah, Bh)← Kd, wind speed, pointing angle
Subaqueous vertical uncertainty (SV U)← AvDi +Bv

Subaqueous horizontal uncertainty (SHU)← AhDi +Bh

if SV U < 0.10 then
(SV U)← 0.10

end if
else

(SV U)← 0
(SHU)← 0

end if
end for
THU ←

√
sigma_along2 + sigma_across2 + SHU2

TV U ←
√
sigma_h2 + SV U2
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Figure 9: Approach to ATL24 TPU modeling.
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5.2 Computational Performance

5.2.1 Model Training Data

A key step in the ATL24 processing workflow is training each of the machine learning
classification algorithms to extract signal and accurate label the data to the best of each
algorithm’s ability given variations in environmental conditions. As such, a dataset of
manually labeled ATL03 was created (Ohlwiler et al. 2023).

While the database was developed specifically for ATL24, it has been made available
through a ScholarsArchive publication in hopes that the datasets will benefit other researchers
in the scientific community, including those interested in developing and testing their own
algorithms for auto-segmentation of seafloor and sea surface returns. These data sets are
provided ’as is’ and no claims are made about their suitability for any particular purpose.
Please note that refraction correction has not been performed on these datasets. The reason
is that these data are intended for use in training and testing algorithms for automatically
detecting seafloor and sea surface returns in ATL03 datasets—steps which are performed
before refraction correction. For users who would like to apply refraction correction, Python
and MATLAB scripts are available on this GitHub repository: https://github.com/ICESat2-
Bathymetry/Information

5.2.2 Individual algorithm performance

There are many performance metrics to choose from when evaluating classification algorithms.
As such, it is difficult to select the appropriate metrics or combinations of metrics that
suit a specific application. For example, some accuracy measures could be ill-suited for
characterizing datasets that have imbalanced classification distributions. Additionally, the
metrics can be selected from those that indicate how well the algorithm classifies the photons
or they could address how well the identified sea floor photons match the elevations from
independent reference data.

Furthermore, we could choose to make these measurements over individual ground tracks
and then aggregate these measurements, or we could instead combine all the ground tracks
into a single dataset and evaluate a single metric on this single dataset. These two methods
might be similar or they may produce very different results depending on how the errors are
distributed within each dataset and also on the sizes of the individual datasets.

When quantifying the ATL24 algorithms’ classification performances, F1-scores, balanced
accuracy and accuracy are used. Other scores like Matthews correlation coefficient (MCC, or
phi coefficient), calibrated F1, and area under precision-recall curve (AUC-PR) were also
investigated. However, these values were strongly correlated with F1 and BA, and ultimately
did not offer any additional information on algorithm performance.

F1-scores characterize the overall (multi-class) performance of an algorithm and assist
when measuring the error for individual (binary) classifications, for example, bathymetry
versus non-bathymetry. F1 scores are more sensitive to errors in the minority class, especially
when the dataset is unbalanced. However, a drawback of using F1-scores is that they do not
include true negative predictions, whereas balanced accuracy is a measure that does include
true negatives. In addition, balanced accuracy places more emphasis on overall performance
across all data classes. ATL24, or rather, ATL03 input datasets, have a high-class imbalance.
The imbalance is because there are a very high number of sea surface points relative to

38



both the background noise photons and the often, sparse amount of bathymetry due to
signal attenuation (turbidity) or low density seafloor returns in deeper depths. In order to
summarize scores across all classes, Macro and Micro F1 scores were used. Macro F1 scores
are computed by averaging binary F1 scores across all classes without weighting. Similar to
binary F1 scores, Macro F1 scores emphasize performance of the minority class. Micro F1
scores are computed by tallying true positives, false positives, and false negatives, regardless
of photon class, and then computing an F1 score from the combined tallies. Similar to binary
balanced accuracy, Micro F1 scores emphasize overall performance across all classes. By
including the three types of accuracy metrics, the outcomes from each algorithm can be
compared to determine the performance differences quantitatively, proving insight into why
there are performance differences in specific locations and conditions.

Table 6: Sea Surface cross validation results from 180 labeled datasets.

Algorithm Accuracy F1-Score Balanced
Accuracy

CoastNet 0.959 0.973 0.945
Quantile Trees 0.947 0.965 0.928
OpenOceans++ 0.946 0.965 0.910
Ensemble 0.970 0.981 0.946

Table 7: Bathymetry cross validation results from 180 labeled datasets.

Algorithm Accuracy F1-Score Balanced
Accuracy

Bathy Pathfinder 0.974 0.198 0.567
CoastNet 0.991 0.794 0.901
CShelph 0.982 0.406 0.635
Median Filter 0.987 0.671 0.798
OpenOceans 0.985 0.686 0.851
Quantile Trees 0.986 0.605 0.740
Ensemble 0.992 0.816 0.892

Table 8: Cross validation results from 180 labeled datasets.

Algorithm Macro F1-Score Micro F1-Score
Bathy Pathfinder 0.672 0.933
CoastNet 0.882 0.949
CShelph 0.748 0.941
Median Filter 0.839 0.946
OpenOceans 0.836 0.938
Quantile Trees 0.808 0.935
Ensemble 0.889 0.950
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Table 6 provides the accuracies, F1-scores and balanced accuracy for the sea surface
points when using a cross-validation strategy from 180 manually labeled datasets for the 4
algorithms that identify sea surface. Cross-validation is an important part of assessing an ML
algorithm’s performance by separating the data set into multiple training and testing sets
and ensures that the model works well on data not previously seen. Data separation reduces
overfitting by testing multiple data splits and provides a better estimate of model accuracy
than a simple train-test split. A few observations from Table 6 is that CoastNet out performs
the other two base algorithms for correctly identifying sea surface photons, although all three
accuracy metrics between the 3 individual algorithm inputs are fairly close. However, the
ensemble scores for sea surface photon classification are superior in all performance metric
categories. Table 7 provides the cross-validation results for each of the individual algorithms
and the ensemble with regard to identifying bathymetry photons. These results show fairly
close accuracy numbers which is primarily attributed to the imbalance of the dataset, as
most photons are sea surface. However, the F1 scores and the balanced accuracies are quite
different across the algorithms. As with the sea surface results, the ensemble provides the
best quality output in comparison to the other, individual approaches.
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5.3 Data Quality and Filtering Flags

For the initial release of ATL24 the product provides some parameter values and binary
flags to assist users with filtering data that meets certain criteria or requirements. One of
the most useful parameters for filtering on the general quality of the classification accuracy
is the confidence variable. The confidence value is a per photon value determined by the
ensemble as a prediction probability. The prediction probability is determined similar to
a softmax function but has a few differences. Ultimately, the prediction probability is the
confidence that the classification is correct for each of the three classes (surface, bathymetry
and other). These values are combined as log-odds scores across all decision trees in the
model. By passing the combined score through a logistic function (the inverse of the logit
function) the ensemble transforms the log-odds scores into a range of 0 to 1 as the prediction
probability for that classification. The classification with the maximum prediction probability
is used as the photon’s classification (the argmax). The numerical value of the maximum
prediction probability is used as the photon’s confidence score.

Related to this confidence parameter is the low_confidence_flag parameter. This value
is currently set to 0.6 as a best-estimate for removing those photon classification that have
a lower probability of being correct. Removing these lower confidence photons (=1) will
certainly eliminate many bathymetry false positives but could be at the cost of removing
true positives in the case where fewer of the base algorithm inputs to the ensemble agreed.
The threshold is determined by comparing the photon elevations and geolocations to a
reference data set. A direct comparison between the provided the vertical disparity. For those
comparisons that were within 5 m of separation, the corresponding F1 score was computed.
This process was repeated as a function of the ensemble’s confidence score. This functional
relationship peak value occurred at 0.6. However, it should be noted that the 0.6 value
is based on evaluation of the ensemble performance metrics given the initial repository of
training data, the specific reference data and the collective contribution of the six base
classification algorithms. This value is expected to change with future iterations of the ATL24
product.

In terms of ATL24 flags on the product, there are two that provide insight into situations
where some of the ancillary data were not available for a given photon. The invalid_kd flag
is a binary flag that indicates the absence (=1) of a VIIRS Kd490 value within ±1 day of
the time tag on the photon. Having the VIIRS Kd490 value is an important component in
the total propagated uncertainty calculation. An invalid flag indicates that the uncertainty
estimate may be compromised. The invalid_wind_speed is also a binary flag to indicate the
absence (=1) of a corresponding ATL09 wind speed. Absense of wind speed also impacts
the total propagated uncertainty estimation. Other useful flag of interest when considering
filtering for higher quality data is the sensor_depth_exceeded. This flag (=1) is for scenarios
when the photon depth exceeds any plausible ICESat-2 depth but remains (=0) when the
depth is reasonable. Finally, the night_flag is a binary flag to indicate when the photon was
detected in the absence of sunlight (=1). This was added with the knowledge that often the
presence of solar background noise degrades the classification accuracy. The combination
of uncertainty values, ensemble confidence scores, invalid_kd flags, and invalid_wind_speed
flags, and night_flags enables robust filtering of the data for specific use cases.
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6 ATL24 Implementation Architecture and Product Accessibility

6.1 SlideRule Overview

The current user experience with ICESat-2 data is associated with downloading large volumes
of standard data products from NSIDC and then developing independent routines if the goal
is to explore new parameterizations or data resolutions for their own research. This paradigm
is the case for ICESat-2 but it is also the scenario for many NASA satellite missions and the
supporting NASA DAACs. Often the only data tools made available to users are those for
geographical and/or temporal subsetting and although extremely useful in data downloads
the requests can take hours depending on the size of the area. State-of-the-art solutions
to length and voluminous data downloads seem to be leveraging on-demand, cloud-based
processing. One example of this is the Alaska Satellite Facility’s Hybrid Pluggable Processing
Pipeline (ASFHyP3) for customized processing of SAR images across multiple missions. The
OpenTopography Project provides another example through its support of web-based services
for scalable capabilities in processing and analysis of Earth science-oriented topography data
(Shean et al. 2023). These more modern approaches to data production and dissemination
inspired SlideRule, with specific applications for ICESat-2.

SlideRule is an on-demand data processing system for rapid, scalable, open science, which
is open to the public and accessible at https://slideruleearth.io. SlideRule runs in Amazon’s
cloud under GSFC Code 606’s Science Managed Cloud Environment (SMCE) and has access
to NASA’s Cumulus data archives. SlideRule provides web-services for researchers and other
data systems to generate custom data products in real-time using processing parameters
supplied at the time of the request.

Scientists access SlideRule directly from any Python environment using a provided client;
a Javascript client is also provided for integrating SlideRule into other web-based systems.
SlideRule is currently being used by glacier, snow, and bathymetry researchers to process
tens of thousands of ICESat-2 granules each month.

SlideRule also supports private instantiations of its infrastructure that require authen-
ticated access. These instantiations, called private clusters, are managed by the SlideRule
Provisioning System at https://ps.slideruleearth.io. Private clusters are used for execut-
ing large processing runs, providing dedicated compute resources, and running proprietary
algorithms.
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6.2 Deployment Environment

ATL24 will use SlideRule to provide the compute infrastructure for all four project objectives:

• The atl24g gold standard product will be generated by a private instantiation of SlideRule
running in the AWS us-west-2 data center. The granules will initially exist in SlideRule’s
private S3 bucket prior to being transferred to the NSIDC.

• The atl24s and atl24p web services will be provided by the public instantiation of
SlideRule that runs in the AWS us-west-2 data center.

• The graphical web interface will be hosted in AWS S3 and served by Amazon’s CloudFront
at https://client.slideruleearth.io.

Figure 10: Top Level SlideRule Architecture
SlideRule Native Runtime
The native runtime environment for SlideRule services is an extended Lua interpreter

where each request maps to a Lua script that instantiates custom classes written in C++ to
perform the processing needed to fulfill the request.

The runtime is designed to quickly complete requests and return results back to users in
near real-time. To that end, all requests are expected to complete within 10 minutes, and
results are streamed back to the user as soon as they are available, over a TCP/IP connection
that remains open for the entire time of the request. (It is typical for the users that request
many granules to be processed at once to start receiving results for parts of their request
that have finished before other parts of their request have even begun to be processed).

The native runtime environment will be used for the atl24s and atl24p endpoints, but will
not be used exclusively for the atl24g endpoint, as the processing needed for that endpoint
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includes long-running Python scripts. In addition to using the native runtime, the atl24g
endpoint will also use the SlideRule Container Runtime.

SlideRule Container Runtime
The container runtime environment for SlideRule services is a new runtime implemented

specifically to meet the needs of the atl24g endpoint. It uses the cluster management,
intelligent load balancing, and job orchestration components of SlideRule to kick-off and
communicate with Docker containers that are u

Figure 11: Top Container Schematic of SlideRule runtime environment

Applications written in Python will execute inside a Docker container running a Python
environment, and will use a provided Python API to retrieve a list of input files and return
a list of output files. Additional Docker container environments will be made available for
programs not written in Python.

6.3 Development Environment

The development of the atl24g, atl24s, and graphical web page will be done on local de-
velopment machines and coordinated through the GitHub ICESat-2 organization. This
includes training models, writing source code, compiling code, and deploying to both test
and production environments.
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Both compute and storage services in AWS are available through the SlideRule SMCE
account and will be used on an as-needed basis.

The following data resources will be stored in the SlideRule SMCE account S3 bucket:

• Labeled photon data

• Global bathymetry mask

• Refractive index

• Uncertainty lookup table

The following Docker images will be stored in the SlideRule SMCE account container registry:

• SlideRule server, intelligent load balancer, and monitor

• Python runtime environment

The following applications will be hosted in the SlideRule SMCE S3 bucket:

• Graphic web interface

• Documentation webpage
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6.4 Bathymetric Processing Masks

Gridded surface masks for land ice, sea ice, land, ocean and inland water are used within the
processing chain of ATL03 to reduce the volume of data processed and guide the production
of surface-specific higher-level ICESat-2 data products.

A key step in the ATL24 workflow is applying a bathymetric search mask (Figure 12),
which determines where to search for bathymetry. ATL03 granules within the mask are
input to the algorithm to search for bathymetry, while those outside the mask are ignored in
subsequent ATL24 processing steps. Use of the mask drastically reduces computation time
by ignoring data that are on land or far too deep and/or too turbid for ATLAS bathymetric
measurement. However, there is an important tradeoff in establishing the mask: including
too much area unnecessarily increases processing time, while being too restrictive could lead
to bathymetry being missed. Our guiding philosophy in establishing the mask was to err on
the side of including too much area, to minimize the probability of missing the discovery of
new bathymetric features, such as offshore sandbars, reefs, seamounts, or other submerged
features, including those far from shore. Since discovery of such features could lead to major
scientific advances, some increase in processing time was determined to be an acceptable
tradeoff.

Figure 12: Example ATL24 bathymetric search mask. The colors in the figure correspond to ATL03
granule regions.

The general process used to create the mask was to use a coarse, global bathymetric data
set to segment the areas in which ICESat-2 bathymetric measurement might be feasible,
applying generous buffers, both vertically and horizontally, to extend the coverage extents and
avoid missing “unexpected” bathymetry. The input consisted of the NOAA ETOPO 2022 30
arc-second data set (NOAA National Centers for Environmental Information, 2022). ETOPO
2022 is a seamless, global topographic-bathymetric dataset compiled from best-available
sources with EGM 2008 orthometric heights. Offshore bathymetric data within ETOPO
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2022 largely make use of General Bathymetric Chart of the Oceans (GEBCO) 2022 data,
which in turn, use bathymetry prediction from satellite gravimetry for large areas of the
global ocean. However, the nearshore data, which better correspond with the areas in which
ICESat-2 bathymetric observations are feasible, often incorporate more accurate source data,
including, in some cases airborne bathymetric lidar data and single beam and multibeam
echosounder (MBES) data. Because of the unknown accuracy of the ETOPO 2022 dataset in
many nearshore areas, as well as its relatively coarse resolution and the goal of not missing
ICESat-2 bathymetry detections, both horizontal and vertical buffers were applied to generate
the search mask. First, although the limit of ICESat-2 depth measurement in even the
very clearest areas is 50 m (in part, due to the telemetry window settings, as described in
J. Dietrich et al. 2023), an additional 50 m depth buffer was applied. Hence, the initial mask
boundary was set at the 100-m depth contour generated from the ETOPO 2022 dataset. The
100-m depth contour was intersected with a 0.25° grid and the grid cells that were selected
by the intersection are the basis for the masks. Next, a horizontal buffer of -m was applied.
Then, manual editing was performed to fill gaps (i.e., join disconnected, but proximate areas)
and improve the mask in challenging areas, such as around small islands, archipelagos, and
complex coastal geometries. Throughout the process, the guiding philosophy was to err on
the side of including too much area. An additional data layer used in this analysis was the
ICESat-2 Bathymetric Retrievability Index, developed by the ATL24 team and described
in J. Dietrich et al. 2023). The inputs to this layer consisted of Kd490, diffuse attenuation
coefficient of downwelling irradiance at 490 nm, data from the Visible Infrared Imaging
Radiometer Suite (VIIRS) sensors on the on the Suomi NPP and NOAA-20 satellite missions,
and ETOPO2022. Kd490 was converted to Kd532 (corresponding to ATLAS’s wavelength),
and then converted to Secchi depth, Zsd, using an empirical relationship (Guenther 1985).
Monthly Zsd averages were overlaid on the ETOPO2022 layer. Masks were then generated
for all areas for which Zsd > ZETOPO2022, representing the areas in which ICESat-2 is
predicted to be able to measure bathymetry. A final raster layer was generated representing
the number of months per year that ICESat-2 bathymetry retrieval is anticipated to be
possible at each grid cell. This layer was disseminated via an ArcGIS Online webGIS:
https://experience.arcgis.com/experience/474b9d16f9da4ca4b2830fcfa92852d9
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6.5 Known Issues

ATL24 product known issues can be categorized as data quality issues, user utility issues, or
product parameterization. Each of these categories has several different facets that range in
complexity of the problems and the possibility of a solution.

• Data Quality

1. Classification performance: The most notable issue with data quality will likely
be the photon-classification accuracy, namely Class 40 false positives. Although
the innovation of using an ensemble improves the classification over the individual
algorithm approaches, there are still many locations where ATL24 is reporting
bathymetry incorrectly. Certainly, the ensemble confidence score helps limit some
of these false positives but there can be improvements. Table 9 provides a summary
of the classification issues on version 1.0 of ATL24 and mentions possible solutions
for future data releases.

Table 9: Known issues, reasons and possible solutions to ATL24 classification accuracy

Classification Issue Reason Possible Solution

Class 40 false negatives in
deep water

Classification algorithms
have been developed on
shallow depth environments

Create new training data
in locations with increase
depth opportunities

Class 40 false positives for
daylight granules

Solar background creates a
different scenario of signal
finding

create a separate model
pipeline for day and night
granules

Class 40 false positives in wa-
ter column

Turbidity, instrument re-
sponse, fish and mermaids

Create training data with
higher levels of noise (turbity
andor solar background)

Class 40 false positives in
depths past extinction depth

High levels of noise within
the entire vertical range win-
dow

Filter those class 40 points
that have high vertical un-
certainty values

Class 40 false positives in
close proximity of sea sur-
face

The ATL24 algorithms of-
ten mistake dynamic or
highly reflective sea surface
as bathymetry. The false
positives are also often re-
lated to the instrument re-
sponse signal (echo)

Filter by the ATL03 flag re-
turn_source where if the flag
is (=3) it is predicted to be
an echo

2. TPU Estimation: The uncertainty estimates from the ATL24 TPU model are
currently optimistic when compared with outputs of empirical accuracy assessments.
Improvements to the TPU model for uncertainty determination are in the works
for a future ATL24 release.

3. EGM08 Geoid: The EGM08 geoid model used for computing ATL24 orthometric
heights is outdated and contains errors.
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4. Refraction correction: The refractive index of water layer usid in the ATL24
refraction correction is based on global, 0.25 degree resolution temperature and
salinity datasets processed using the Quan-Fry equation Quan and Fry 1995. The
current version of the refractive index layer uses only annual averages of salinity
and temperature at each geographical location and does not currently account for
temporal variability.

• User Utility

1. Uncertainty value: For the subaqueous photons the uncertainty value on each
photon is a combination of the uncertainty in ATL03 and the TPU model uncer-
tainty. If the user would like to separate these values the original ATL03 sigma_h,
sigma_lat, the index_ph value can provide the link back to the original ATL03
photon’s uncertainties.

2. Refraction correction: For the subaqueous photons the correction value applied
from the index of refraction data layer can be removed by using the index_ph to
link back to the original ATL03 photon’s position.

• Product Parameterization

1. Waves: Currently there are no parameters on ATL24 related to wave characteristics
derived from the sea surface photons

2. Classification confidence: When the value of the confidence is less than 0.6
the low_confidence = 1. This threshold value will change with future iterations of
ATL24.
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7 Appendices

7.1 Appendix A: Acronyms

Abbreviation Full Form
ATLAS Advanced Topographic Laser Altimetry System
AWS Amazon Web Services
CMR Common Metadata Repository
CSV Comma Separated Vector
CUDEM NOAA NCEI Continuously Updated Digital Eleva-

tion Model
DAAC Distributed Active Archive Center
ECEF Earth Centered Earth Fixed
ETOPO Earth Topography Global relief model (NOAA)
GEBCO General Bathymetric Chart of the Oceans
GSFC Goddard Space Flight Center
ICESat-2 Ice, Cloud, and land Elevation Satellite
LUT Lookup table
JSON JavaScript Object Notation
MBES Multibeam Echosounder
NCEI National Centers of Earth Information
NDWI Normalized Difference Water Index
NOAA National Oceanic and Atmospheric Administration
NSIDC National Snow and Ice Data Center
OSU Oregon State University
S3 Amazon Simple Storage Solution
SMCE Science Managed Cloud Environment
TEP Transmitter Echo Path
TPU Total propagated uncertainty
UTexas University of Texas at Austin
UTM Universal Transverse Mercator
VIIRS Visible Infrared Imaging Radiometry Suite
ZETOPO
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7.2 Appendix B: User Notes
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