GLAS/ICESat L1B Global Waveform-based Range Corrections Data (HDF5), Version 34
Data set id:
GLAH05
DOI: 10.5067/ICESAT/GLAS/DATA108
This is the most recent version of these data.
Version Summary
Version Summary
Release 34 incorporates fixes for several data issues that were determined to exist in the GLAS Release 33 data products.
Overview
GLAH05 Level-1B waveform parameterization data include output parameters from the waveform characterization procedure and other parameters required to calculate surface slope and relief characteristics. GLAH05 contains parameterizations of both the transmitted and received pulses and other characteristics from which elevation and footprint-scale roughness and slope are calculated. The received pulse characterization uses two implementations of the retracking algorithms: one tuned for ice sheets, called the standard parameterization, used to calculate surface elevation for ice sheets, oceans, and sea ice; and another for land (the alternative parameterization). Each data granule has an associated browse product.
Parameter(s):
GLACIER ELEVATION/ICE SHEET ELEVATIONGLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHYICE SHEETSTERRAIN ELEVATION
Platform(s):
ICESat
Sensor(s):
ALTIMETERS, CD, GLAS, GPS, GPS Receiver, LA, PC
Data Format(s):
HDF
Temporal Coverage:
20 February 2003 to 11 October 2009
Temporal Resolution:
- 23 minute
Spatial Resolution:
- 60 m to 70 m
- 60 m to 70 m
Spatial Reference System(s):
ITRF2008
EPSG:5332
Spatial Coverage:
N:
86
S:
-86
E:
180
W:
-180
Blue outlined yellow areas on the map below indicate the spatial coverage for this data set.
Data Access & Tools
A free NASA Earthdata Login account is required to access these data. Learn More
Documentation
User Guide
General Resources
Product Specification Documents
Help Articles
General Questions & FAQs
This article covers frequently asked questions about the NASA NSIDC DAAC's Earthdata cloud migration project and what it means to data users.
Analysis of altimetric data acquired by the GLAS instrument requires accurate determination of the laser spot location on the Earth's surface (ice, land, water, clouds) or geolocation of the laser spot.
This short article describes the customization services available for ICESat/GLAS data using Earthdata Search
The standard waveform fit is optimized for "ice sheet-like" returns. The majority of these are single-peaked, narrow waveforms. The standard fit allows for only two peaks. Alternate waveform fitting is meant to capture up to six peaks.
How to Articles
Many NSIDC DAAC data sets can be accessed using the NSIDC DAAC's Data Access Tool. This tool provides the ability to search and filter data with spatial and temporal constraints using a map-based interface.Users have the option to
Harmony API Quickstart Guide: Customizing NASA NSIDC DAAC data in Earthdata Cloud
To convert HDF5 files into binary format you will need to use the h5dump utility, which is part of the HDF5 distribution available from the HDF Group. How you install HDF5 depends on your operating system.
NASA Earthdata Search is a map-based web interface for discovering and ordering data using spatial and temporal filters. This article explains how to search for ICESat/GLAS data based on spatial and temporal constraints.
The HDF Group has example code for access and visualization of MODIS, GLAS HDF5, AMSR-E, and NISE data in MATLAB, IDL, Python, and NCL.
This guide will provide an overview of the altimetry measurements and data sets across the missions, as well as a guide for accessing the data through NASA Earthdata Search and programmatically using an Application Programming Interface (API).
The NASA Earthdata Cloud is the NASA cloud-based archive of Earth observations. It is hosted by Amazon Web Services (AWS). Learn how to find and access NSIDC DAAC data directly in the cloud.
All data from the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) is directly accessible through our HTTPS file system using Wget or curl. This article provides basic command line instructions for accessing data using this method.
This article highlights the NSIDC DAAC data sets available with customization options and outlines a workflow for searching, ordering, and customizing data in NASA Earthdata Search. This approach is ideal for users who want to download data to their local machine.
HDFView
https://support.hdfgroup.org/products/java/hdfview/
When you first open HDFView, the HDFView window appears with an empty tree and data panel.