Soil Moisture Active Passive (SMAP) Mission

Enhanced Level 1C Radiometer Data Product Specification Document

Version 3.0 R17 Extended Mission Release

Steven Chan R. Scott Dunbar

August 31, 2020

JPL D-56290

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is in the Product Data Management System (PDMS): https://pdms.jpl.nasa.gov/

National Aeronautics and Space Administration

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109-8099 California Institute of Technology

Copyright 2020 California Institute of Technology. U.S. Government sponsorship acknowledged. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Soil Moisture Active Passive (SMAP) Enhanced Level 1C Radiometer Product Specification Document

Extended Mission Release

Prepared by:

Steven Chan SMAP L1C_TB_E Algorithm Lead Date

Approved by:

R. Scott Dunbar SMAP Algorithm Development Lead Date

Lala Pashaian SMAP SDS Project Element Manager

Simon Yueh SMAP Project Scientist

Date

Date

DOCUMENT CHANGE LOG

REVISION	DATE	SECTIONS CHANGED	REASON FOR CHANGE (ECR #)
-	Nov 5, 2016		Initial Release
	Apr 30, 2018	4.6.5, 4.6.[14-17]	Prime Mission Release
	Aug 31, 2020	N\A	Extended Mission Release
			Improved Calibration for Level-
			1B Radiometer Observations

TABLE OF CONTENTS

1	INT	RODUCTION	6
	1.1	IDENTIFICATION	6
	1.2	SCOPE	
	1.3	THE SMAP MISSION	
	1.4	DATA PRODUCTS	
	1.5	L1C_TB_E OVERVIEW	10
2	DA	ΓA PRODUCT ORGANIZATION	11
	2.1	FILE FORMAT	
	2.2	HDF5 NOTATION	11
	2.2.	1 HDF5 File	11
	2.2.2	2 HDF5 Group	11
	2.2.	3 HDF5 Dataset	12
	2.2.4	4 HDF5 Datatype	12
	2.2.:	5 HDF5 Dataspace	13
	2.2.	6 HDF5 Attribute	13
	2.3	SMAP FILE ORGANIZATION	13
	2.3.		13
	2.3.2		
	2.3.		
	2.3.4		
	2.3.		
	2.4	DATA DEFINITION STANDARDS	
	2.4.	J 1	
	2.5	FILL/GAP VALUES	
	2.6	FLEXIBLE DATA DESIGN	20
3	EAS	SE 2.0 GRID	21
4	PRO	DDUCT DEFINITION	24
•	4.1	OVERVIEW	
	4.2	PRODUCT NAMES	
	4.3	VOLUME	
	4.4	L1C_TB_E PRODUCT METADATA	25
	4.5	DATA STRUCTURE	33
	4.6	PARAMETER DEFINITIONS	35
	4.6.	l cell_row	35
	4.6.2	2 cell_col	35
	4.6.	3 cell_lat	36
	4.6.4	=	
	4.6.		
	4.6.0		
	4.6.'		
	4.6.3		
	4.6.9	9 cell_centroid_lon_[fore aft]	37

5

6

4.6.	10 cell_antenna_scan_angle_[fore aft]	37
4.6.		
4.6.		
4.6.	· · · · ·	
4.6.		
4.6.		
4.6.	16 cell_surface_water_fraction_mb_h_[fore aft]	39
4.6.		
4.6.	18 cell_tb_h_[fore aft]	40
4.6.	19 cell_tb_v_[fore aft]	40
4.6.	20 cell_tb_3_[fore aft]	40
4.6.	21 cell_tb_4_[fore aft]	40
4.6.	22 cell_number_measurements_h_[fore aft]	41
4.6.	23 cell_number_measurements_v_[fore aft]	41
4.6.		
4.6.	25 cell_number_measurements_4_[fore aft]	41
4.6.	26 cell_tb_error_h_[fore aft]	42
4.6.	27 cell_tb_error_v_[fore aft]	42
4.6.	28 cell_tb_error_3_[fore aft]	42
4.6.	29 cell_tb_error_4_[fore aft]	43
4.6.	30 cell_tb_qual_flag_h_[fore aft]	43
4.6.	31 cell_tb_qual_flag_v_[fore aft]	44
4.6.	.32 cell_tb_qual_flag_3_[fore aft]	45
4.6.	.33 cell_tb_qual_flag_4_[fore aft]	46
RE	FERENCES	48
5.1	REQUIREMENTS	-
5.2	PLANS	
5.3	ALGORITHM THEORETICAL BASIS DOCUMENTS	
5.4	PRODUCT SPECIFICATION DOCUMENTS	
5.5	ENHANCED PRODUCTS (DECEMBER 2016)	
5.6	OTHERS	
AP	PENDIX A: ACRONYMS AND ABBREVIATIONS	51

1 INTRODUCTION

1.1 Identification

This is the Product Specification Document (PSD) for the SMAP Enhanced Level 1C Radiometer Data Product for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The product provides gridded data of 6:00 am (descending) and 6:00 pm (ascending) SMAP Level 1B radiometer observations, ancillary data, and quality-assessment flags on a family of 9-km Earth-fixed grids. Only cells that are covered by the actual swath are written into the product.

1.2 Scope

This document describes the file format and data contents of the SMAP Enhanced Level 1C Radiometer Data Product (hereafter referred to as 'L1C_TB_E' for brevity) for external software interfaces. The SMAP Science Data Management and Archive Plan Document provides a more comprehensive explanation of this product within the context of the SMAP instrument, algorithms, and software.

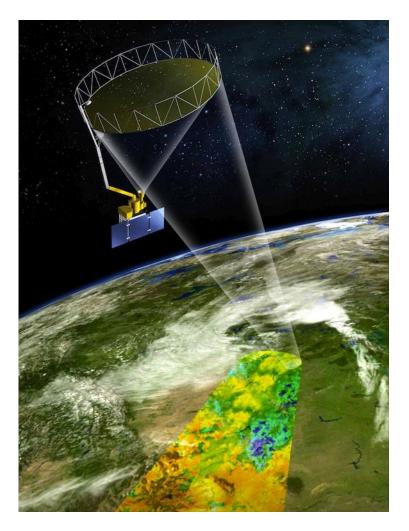
1.3 The SMAP Mission

The SMAP mission is a unique mission that combines passive (radiometer) and active (radar) observations to provide global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. The resulting space-based hydrosphere state measurements will improve:

- Understanding of the processes that link the terrestrial water, energy and carbon cycles
- Estimate of global water and energy fluxes at the land surface
- Measurement of net carbon flux in boreal landscapes
- Weather and climate forecast skill
- Flood prediction and drought monitoring capabilities

Table 1 is a summary of the SMAP instrument functional requirements derived from its science measurement needs. The goal is to combine the various positive attributes of the radar and radiometer observations, including spatial resolution, sensitivity to soil moisture, surface roughness, and vegetation, to estimate soil moisture at a resolution of 10 km and freeze-thaw state at a resolution of 1-3 km.

Scientific Measurement Requirements	Instrument Functional Requirements
Soil Moisture:	L-Band Radiometer (1.41 GHz):
$\sim \pm 0.04$ cm ₃ /cm ₃ volumetric accuracy (1-	Polarization: TH, TV, T3, and T4
sigma) in the top 5 cm for vegetation water	Resolution: 40 km
content \leq 5 kg/m ²	Radiometric Uncertainty*: 1.3 K
Hydrometeorology at ~10 km resolution	L-Band Radar (1.26 and 1.29 GHz):
Hydroclimatology at ~40 km resolution	Polarization: VV, HH, HV (or VH)
	Resolution: 10 km
	Relative accuracy*: 0.5 dB (VV and
	HH)
	Constant incidence angle** between
	35° and 50°
Freeze/Thaw State:	L-Band Radar (1.26 GHz & 1.29
Capture freeze/thaw state transitions in	GHz):
integrated vegetation-soil continuum with two-	Polarization: HH
day precision at the spatial scale of landscape	Resolution: 3 km
variability (~3 km)	Relative accuracy*: 0.7 dB (1 dB per
	channel if 2 channels are used)
	Constant incidence angle** between
	35° and 50°
Sample diurnal cycle at consistent time of day	Swath Width: ~1000 km
(6 am/6 pm Equator crossing);	Minimize Faraday rotation
Global, ~3 day (or better) revisit;	(degradation factor at L-band)
Boreal, ~2 day (or better) revisit	
Observation over minimum of three annual	Baseline three-year mission life
cycles	
* Includes precision and calibration stability	
** Defined without regard to local topographic v	ariation


Table 1: SMAP Mission Requirements

The SMAP instrument incorporates an L-band radar and an L-band radiometer that share a single feedhorn and parabolic mesh reflector. As shown in Figure 1, the reflector is offset from nadir and rotates about the nadir axis at 14.6 rpm (nominal), providing a conically scanning antenna beam with a surface incidence angle of approximately 40°. The provision of constant incidence angle across the swath simplifies data processing and enables accurate repeat-pass estimates of soil moisture and freeze/thaw change. The reflector has a diameter of 6 m, providing a radiometer 3 dB antenna footprint of 40 km (root-ellipsoidal-area). The real-aperture radar footprint is 30 km, defined by the two-way antenna beamwidth. The real-aperture radar and radiometer data will be collected globally during both ascending and descending passes.

To obtain the desired high spatial resolution, the radar employs range and Doppler discrimination. The radar data can be processed to yield resolution enhancement to 1-3 km spatial resolution over the outer 70% of the 1000-km swath. Data volume constraints prohibit the downlinking of the entire radar data acquisition. Radar measurements that enable high-

resolution processing will be collected during the morning overpass over all land regions as well as over surrounding coastal oceans. During the evening overpass, data north of 45° N will be collected and processed to support robust detection of landscape freeze/thaw transitions. The SMAP baseline orbit parameters are:

- Orbit altitude: 685 km (2-3 day average revisit globally and 8-day exact repeat)
- Inclination: 98 degrees, sun-synchronous
- Local time of ascending node: 6 pm (6 am descending local overpass time)

Figure 1: The SMAP mission concept consists of an L-band radar and radiometer sharing a single spinning 6-m mesh antenna in a sun-synchronous dawn / dusk orbit.

The SMAP radiometer measures the four Stokes parameters, TH, TV, T3, and T4 at 1.41 GHz. The TH and TV channels are the pure horizontally and vertically polarized brightness temperatures. The cross-polarized T3-channel measurement can be used to correct for possible Faraday rotation caused by the ionosphere. Mission planners expect that the selection of the 6 am sun-synchronous SMAP orbit should minimize the effect of Faraday rotation. Anthropogenic Radio Frequency Interference (RFI), principally from ground-based surveillance radars, can contaminate both radar and radiometer measurements at L-band. Early measurements and results from ESA's Soil Moisture and Ocean Salinity (SMOS) mission indicate that in some regions RFI is present and detectable. The SMAP radar and radiometer electronics and algorithms include design features to mitigate the effects of RFI. The SMAP radar utilizes selective filters and an adjustable carrier frequency to tune to predetermined RFI-free portions of the spectrum while on orbit. The SMAP radiometer will implement a combination of time and frequency diversity, kurtosis detection, and use of T4 thresholds to detect and where possible mitigate RFI.

On July 7, 2015 the SMAP stopped operating, leaving the SMAP radiometer as the only operating instrument on the spacecraft. The following sections have been revised accordingly from the original PSD to acknowledge the current status of the SMAP observatory.

1.4 Data Products

The SMAP products represent four levels of data processing. Level 1 products contain instrument related data. Level 1 products appear in granules that are based on half orbits of the SMAP satellite. The Northernmost and Southernmost orbit locations demarcate half orbit boundaries. Level 2 products contain output from geophysical retrievals that are based on instrument data. Level 2 products also appear in half orbit granules. Level 3 products contain global output of the Level 2 geophysical retrievals for an entire day. Level 4 products contain output from geophysical models that employ SMAP data.

Table 2 lists the official SMAP data products. The table specifies two sets of short names. The SMAP Mission product short names were adopted by the SMAP mission to identify products. Users will find those short names in SMAP mission documentation, SMAP product file names and in the product metadata. The Data Centers will use ECS short names to categorize data products in their local databases. ECS short names will also appear in SMAP product metadata.

Product	Description	Gridding (Resolution)	Latency		
L1A_Radiometer	Radiometer Data in Time-Order		12 hrs		
L1A_Radar	Radar Data in Time-Order		12 hrs		
L1B_TB	Radiometer T _B in Time-Order	(36 x 47 km)	12 hrs		
L1B_TB_E	Radiometer T _B Interpolated on EASE Grid 2.0	9 km	12 hrs		
L1B S0 LoRes	Low Resolution Radar σ_0 in Time-Order	(5 x 30 km)	12 hrs	Instrument Data	
L1C_S0_HiRes	High Resolution Radar σ_o in Half-Orbits	1 km (1 – 3 km)	12 hrs		
L1C_TB	Radiometer T _B in Half-Orbits	36 km	12 hrs		
L1C_TB_E	Radiometer T _B in Half-Orbits, Enhanced	9 km	12 hrs		
L2_SM_A	Soil Moisture (Radar)	3 km	24 hrs		
L2_SM_P	Soil Moisture (Radiometer)	36 km	24 hrs	Science Data (Half-Orbit)	
L2_SM_P_E	Soil Moisture (Radiometer, Enhanced)	9 km	24 hrs		
L2 SM AP	Soil Moisture (Radar + Radiometer)	9 km	24 hrs		
L2_SM_SP	Soil Moisture (Sentinel Radar + Radiometer)	3 km	Best effort		
L3_FT_A	Freeze/Thaw State (Radar)	3 km	50 hrs		
L3_FT_P	Freeze/Thaw State (Radiometer)	36 km	50 hrs		
L3_FT_P_E	Freeze/Thaw State (Radiometer, Enhanced)	9 km	50 hrs		
L3_SM_A	Soil Moisture (Radar)	3 km	50 hrs	Science Data	
L3_SM_P	Soil Moisture (Radiometer)	36 km	50 hrs	(Daily Composite)	
L3 SM P E	Soil Moisture (Radiometer, Enhanced)	9 km	50 hrs		
L3_SM_AP	Soil Moisture (Radar + Radiometer)	9 km	50 hrs		
L4_SM	Soil Moisture (Surface and Root Zone)	9 km	7 days	Science	
L4_C	Carbon Net Ecosystem Exchange (NEE)	9 km	14 days	Value-Added	

Table 2: Standard and Enhanced SMAP data products

1.5 L1C_TB_E Overview

The enhanced SMAP L1C_TB_E product is derived from the enhanced SMAP L1B_TB_E product, which contains interpolated radiometer data on a set of 9-km grids based on the time-ordered brightness temperature (TB) data in the standard SMAP L1B_TB product. To generate the enhanced L1C_TB_E product the processing software ingests the L1B_TB_E data to extract and copy the same data fields as in the current standard SMAP L1C_TB product. This consistency between the standard L1C_TB and the enhanced L1C_TB_E ensures legacy compatibility. Only cells that are covered by the actual swath for a given projection are written in the product.

The data in the enhanced SMAP L1C_TB_E product are presented in three projections: 9-km global projection, 9-km north polar projections and 9-km south polar projection. The projections are based on the National Snow and Ice Data Center (NSIDC) Equal-Area Scalable Earth (EASE-2.0) Grid specifications for SMAP. Within each projection, the data are divided into fore-looking and aft-looking views. For each projection and view, the product contains T_B observations, instrument viewing geometry information, and quality bit flags.

2 DATA PRODUCT ORGANIZATION

2.1 File Format

All SMAP standard products are in the Hierarchical Data Format version 5 (HDF5). The HDF5 is a general-purpose file format and programming library for storing scientific data. The National Center for Supercomputing Applications (NCSA) at the University of Illinois developed HDF to help scientists share data more easily. Use of the HDF library enables users to read HDF files regardless of the underlying computing environments. HDF files are equally accessible in Fortran, C/C++, and other high-level computation packages such as IDL or MATLAB.

The HDF Group, a spin-off organization of the NCSA, is responsible for development and maintenance of HDF. Users should reference The HDF Group website at http://www.hdfgroup.org to download HDF software and documentation.

2.2 HDF5 Notation

HDF5 represents a significant departure from the conventions of previous versions of HDF. The changes that appear in HDF5 provide flexibility to overcome many of the limitations of previous releases. The basic building blocks have been largely redefined, and are more powerful but less numerous. The key concepts of the HDF5 Abstract Data Model are Files, Groups, Datasets, Datatypes, Attributes and Property Lists. The following sections provide a brief description of each of these key HDF5 concepts.

2.2.1 HDF5 File

A File is the abstract representation of a physical data file. Files are containers for HDF5 Objects. These Objects include Groups, Datasets, and Datatypes.

2.2.2 HDF5 Group

Groups provide a means to organize the HDF5 Objects in HDF5 Files. Groups are containers for other Objects, including Datasets, named Datatypes and other Groups. In that sense, groups are analogous to directories that are used to categorize and classify files in standard operating systems.

The notation for files is identical to the notation used for Unix directories. The root Group is "/". A Group contained in root might be called "/myGroup." Like Unix directories, Objects appear in Groups through "links". Thus, the same Object can simultaneously be in multiple Groups.

2.2.3 HDF5 Dataset

The Dataset is the HDF5 component that stores user data. Each Dataset associates with a Dataspace that describes the data dimensions, as well as a Datatype that describes the basic unit of storage element. A Dataset can also have Attributes.

2.2.4 HDF5 Datatype

A Datatype describes a unit of data storage for Datasets and Attributes. Datatypes are subdivided into Atomic and Composite Types.

Atomic Datatypes are analogous to simple basic types in most programming languages. HDF5 Atomic Datatypes include Time, Bitfield, String, Reference, Opaque, Integer, and Float. Each atomic type has a specific set of properties. Examples of the properties associated with Atomic Datatypes are:

- Integers are assigned size, precision, offset, pad byte order, and are designated as signed or unsigned.
- Strings can be fixed or variable length, and may or may not be null-terminated.
- References are constructs within HDF5 Files that point to other HDF5 Objects in the same file.

HDF5 provides a large set of predefined Atomic Datatypes. Table 3 lists the Atomic Datatypes that are used in SMAP data products.

HDF5 Atomic Datatypes	Description
H5T_STD_U8LE	unsigned, 8-bit, little-endian integer
H5T_STD_U16LE	unsigned, 16-bit, little-endian integer
H5T_STD_U32LE	unsigned, 32-bit, little-endian integer
H5T_STD_U64LE	unsigned, 64-bit, little-endian integer
H5T_STD_I8LE	signed, 8-bit, little-endian integer
H5T_STD_I16LE	signed, 16-bit, little-endian integer
H5T_STD_I32LE	signed, 32-bit, little-endian integer
H5T_STD_I64LE	Signed, 64-bit, little-endian integer
H5T_IEEE_F32LE	32-bit, little-endian, IEEE floating point
H5T_IEEE_F64LE	64-bit, little-endian, IEEE floating point
H5T_C_S1	character string made up of one or more bytes

Table 3: HDF5	Atomic Datatypes
---------------	------------------

Composite Datatypes incorporate sets of Atomic datatypes. Composite Datatypes include Array, Enumeration, Variable Length and Compound.

- The Array Datatype defines a multi-dimensional array that can be accessed atomically.
- Variable Length presents a 1-D array element of variable length. Variable Length Datatypes are useful as building blocks of ragged arrays.

• Compound Datatypes are composed of named fields, each of which may be dissimilar Datatypes. Compound Datatypes are conceptually equivalent to structures in the C programming language.

Named Datatypes are explicitly stored as Objects within an HDF5 File. Named Datatypes provide a means to share Datatypes among Objects. Datatypes that are not explicitly stored as Named Datatypes are stored implicitly. They are stored separately for each Dataset or Attribute they describe. None of the SMAP data products employ Enumeration or Compound data types.

2.2.5 HDF5 Dataspace

A Dataspace describes the rank and dimension of a Dataset or Attribute. For example, a "Scalar" Dataspace has a rank of 1 and a dimension of 1. Thus, all subsequent references to "Scalar" Dataspace in this document imply a single dimensional array with a single element.

Dataspaces provide considerable flexibility to HDF5 products. They incorporate the means to subset associated Datasets along any or all of their dimensions. When associated with specific properties, Dataspaces also provide the means for Datasets to expand as the application requires.

2.2.6 HDF5 Attribute

An Attribute is a small aggregate of data that describes Groups or Datasets. Like Datasets, Attributes are also associated with a particular Dataspace and Datatype. Attributes cannot be subsetted or extended. Attributes themselves cannot have Attributes.

2.3 SMAP File Organization

2.3.1 Structure

SMAP data products follow a common convention for all HDF5 Files. Use of this convention provides uniformity of data access and interpretation.

The SMAP Project uses HDF5 Groups to provide an additional level of data organization. All metadata that pertain to the complete data granule are members of the "/Metadata" Group. All other data are organized within Groups that are designed specifically to handle the structure and content of each particular data product.

2.3.2 Data

All data in HDF5 files are stored in individual Datasets. All of the Datasets in an SMAP product are assigned to an HDF5 Group. A standard field name is associated with each Dataset. The field name is a unique string identifier. The field name corresponds to the name of the data element the Dataset stores. This document lists these names with the description of each data element that they identify.

Each Dataset is associated with an HDF5 Dataspace and an HDF5 Datatype. They provide a minimally sufficient set of parameters for reading the data using standard HDF5 tools.

2.3.3 Element Types

SMAP HDF5 employs the Data Attribute "Type" to classify every data field as a specific data type. The "Type" is an embellishment upon the standard HDF5 Datatypes that is designed specifically to configure SMAP data products.

Table 4 lists all of the "Type" strings that appear in the SMAP data products. The table maps each SMAP "Type" to a specific HDF5 Datatype in both the HDF5 file and in the data buffer. The table also specifies the common conceptual data type that corresponds to the "Type" in SMAP executable code.

Туре	HDF5 Datatype (File)	HDF5 Datatype (Buffer)	Conceptual Type
Unsigned8	H5T_STD_U8LE	H5T_NATIVE_UCHAR	unsigned integer
Unsigned16	H5T_STD_U16LE	H5T_NATIVE_USHORT	unsigned integer
Unsigned24	H5T_STD_U16LE, with precision set to 24 bits, and size set to 3 bytes.	H5T_NATIVE_INT	unsigned integer
Unsigned32	H5T_STD_U32LE	H5T_NATIVE_UINT	unsigned integer
Unsigned64	H5T_STD_U64LE	H5T_NATIVE_ULLONG	unsigned integer
Signed8	H5T_STD_I8LE	H5T_NATIVE_SCHAR	signed integer
Signed16	H5T_STD_I16LE	H5T_NATIVE_SHORT	signed integer
Signed32	H5T_STD_I32LE	H5T_NATIVE_INT	signed integer
Signed64	H5T_STD_I64LE	H5T_NATIVE_LLONG	signed integer
Float32	H5T_IEEE_F32LE	H5T_NATIVE_FLOAT	floating point
Float64	H5T_IEEE_F64LE	H5T_NATIVE_DOUBLE	floating point
FixLenStr	H5T_C_S1	H5T_NATIVE_CHAR	character string
VarLenStr	H5T_C_S1, where the length is set to H5T_VARIABLE	H5T_NATIVE_CHAR	character string

Table 4: Element Type Definitions

SMAP HDF5 files employ two different types of string representation. "VarLenStr" are strings of variable length. "VarLenStr" provides greater flexibility to represent character strings. In an effort to make SMAP HDF5 more friendly to users who wish to use netCDF software, SMAP products restrict the use of "VarLenStr". "FixLenStr" are strings with a prescribed fixed-length. "FixLenStr" are useful for fixed length strings that are stored in large multi-dimension array. UTC time stamps are an excellent example of the type of data that store well in a "FixLenStr".

2.3.4 File Level Metadata

All metadata that describe the full content of each granule of the SMAP data product are stored within the explicitly named "/Metadata" Group. SMAP metadata are handled using exactly the same procedures as those that are used to handle SMAP data. The contents of each Attribute that stores metadata conform to one of the SMAP Types. Like data, each metadata element is also assigned a shape. Most metadata elements are stored as scalars. A few metadata elements are stored as arrays.

SMAP data products represent file level metadata in two forms. One form appears in one or more Attributes within the Metadata Group. Combined, those Attributes contain a complete representation of the product metadata. The content conforms to the ISO 19115-2 models in ISO 19139 compliant XML.

The second form of the metadata appears in a set of HDF5 Groups under the "/Metadata" Group. Each of these HDF5 Groups represents one of the major classes in the ISO 19115-2 model. These HDF5 Groups contain a set of HDF5 Attributes. Each HDF5 Attributes represents a specific ISO attribute of the associated ISO class. Although this representation inherits design from the ISO model, it does not completely conform to the model. In many cases, the names of the HDF5 Attributes match those used in the ISO model. In some situations, names were changed to provide greater clarity to SMAP users who are not familiar with the ISO model. Furthermore, to ease metadata searches, the structure of Groups within Groups was limited to four levels.

2.3.5 Local Metadata

SMAP standards incorporate additional metadata that describe each HDF5 Dataset within the HDF5 file. Each of these metadata elements appear in an HDF5 Attribute that is directly associated with the HDF5 Dataset. Wherever possible, these HDF5 Attributes employ names that conform to the Climate and Forecast (CF) conventions. Table 5 lists the CF names for the HDF5 Attributes that SMAP products typically employ.

CF Compliant Attribute Name	Description	Required?
units	Units of measure.	Yes
valid_max	The largest valid value for any element in the Dataset. The data type in valid_max matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding valid_max will also be float32.	No
valid_min	The smallest valid value for any element in the Dataset. The data type in valid_min matches the type of the associated Dataset. Thus, if the	No

Table 5: SMAP Specific Local Attributes

CF Compliant Attribute Name	Description	Required?
	associated Dataset stores float32 values, the corresponding valid_min will also be float32.	
_FillValue	Specification of the value that will appear in the Dataset when an element is missing or undefined. The data type of _FillValue matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding _FillValue will also be float32.	Yes for all numeric data types
long_name	A descriptive name that clearly describes the content of the associated Dataset.	Yes
coordinates	Identifies auxiliary coordinate variables in the data product.	No
flag_values	Provides a list of flag values that appear in bit flag variables. Should be used in conjunction with local HDF5 attribute <i>flag_meanings</i> . Only appears with bit flag variables.	No
flag_masks	Provides a list of bit fields that express Boolean or enumerated flags. Only appears with bit flag variables or enumerated data types.	No
flag_meanings	Provides descriptive words or phrases for each potential bit flag value. Should be used in conjunction with local HDF5 attribute <i>flag_values</i> .	No

2.4 Data Definition Standards

Section 4.6 of this document specifies the characteristics and definitions of every data element stored in this SMAP data product. Table 6 defines each of the specific characteristics that are listed in that section of this document. Some of these characteristics correspond with the SMAP HDF5 Attributes that are associated with each Dataset. Data element characteristics that correspond to SMAP HDF5 Attributes bear the same name. The remaining characteristics are descriptive data that help users better understand the data product content.

In some situations, a standard characteristic may not apply to a data element. In those cases, the field contains the character string 'n/a'. Hexadecimal representation sometimes indicates data content more clearly. Numbers represented in hexadecimal begin with the character string '0x'.

Characteristic	Definition
Туре	The data representation of the element within the storage medium. The
	storage class specification must conform to a valid SMAP type. The

 Table 6: Data Element Characteristic Definitions

Characteristic	Definition	
	first column in table 3 lists all of the valid values that correspond to this	
	characteristic.	
Shape	The name of the shape data element that specifies the rank and	
Shape	dimension of a particular data set.	
	The expected minimum value for a data element. In most instances,	
Valid_min	data element values never fall below this limit. However, some data	
v ana_mm	elements, particularly when they do not reflect normal geophysical	
	conditions, may contain values that fall below this limit.	
	The expected maximum value for a data element. In most instances,	
Valid max	data element values never exceed this limit. However, some data	
v unu_max	elements, particularly when they do not reflect normal geophysical	
	conditions, may contain values that exceed this limit.	
	Some data elements may store a restricted set of values. In those	
Valid Values	instances, this listing specifies the values that the data element may	
	store.	
Nominal	Some data elements have an expected value. In those instances, this	
Value	listing provides that expected value. Nominal values are particularly	
• 4140	common among a subset of the metadata elements.	
	This characteristic specifies the length of the data string that represents	
String Length	a single instance of the data element. This characteristic appears	
	exclusively for data elements of FixLenStr type.	
	Units of measure. Typical values include "deg", "degC", "Kelvins",	
Units	"m/s", "m", "m**2", "s" and "counts". Appendix A includes	
	references to important data measurement unit symbols.	

2.4.1 Array Representation

This document employs array notation to demonstrate and clarify the correspondence among data elements in different product data elements. The array notation adopted in this document is similar to the standards of the Fortran programming language. Indices are one based. Thus, the first index in each dimension is one. This convention is unlike C or C++, where the initial index in each dimension is zero. In multidimensional arrays, the leftmost subscript index changes most rapidly. Thus, in this document, array elements ARRAY(15,1,5) and ARRAY(16,1,5) are stored contiguously.

HDF5 is designed to read data seamlessly regardless of the computer language used to write an application. Thus, elements that are contiguous using the dimension notation in this document will appear in contiguous locations in arrays for reading applications in any language with an HDF5 interface.

This document differentiates among array indices based on relative contiguity of storage of elements referenced with consecutive numbers in that index position. A faster or fastest moving index implies that the elements with consecutive numbers in that index position are stored in relative proximity in memory. A slower or slowest moving index implies that the elements referenced with consecutive indices are stored more remotely in memory. For instance, given

array element ARRAY(15,1,5) in Fortran, the first index is the fastest moving index and the third index is the slowest moving index. On the other hand, given array element array[4][0][14] in C, the first index is the slowest moving index and the third index is the fastest moving index.

2.5 Fill/Gap Values

SMAP data products employ fill and gap values to indicate when no valid data appear in a particular data element. Fill values ensure that data elements retain the correct shape. Gap values locate portions of a data stream that do not appear in the output data file.

Fill values appear in the SMAP L1C_TB_E Product when the L1C_TB_E SPS can process some, but not all, of the input data for a particular swath grid cell. Fill data may appear in the product in any of the following circumstances:

- One of Science Production Software (SPS) executables that generate the SMAP L1C_TB_E Product is unable to calculate a particular science or engineering data value. The algorithm encounters an error. The error disables generation of valid output. The SPS reports a fill value instead.
- Some of the required science or engineering algorithmic input are missing. Data over the region that contributes to particular grid cell may appear in only some of the input data streams. Since data are valuable, the L1C_TB_E Product records any outcome that can be calculated with the available input. Missing data appear as fill values.
- Non-essential information is missing from the input data stream. The lack of nonessential information does not impair the algorithm from generating needed output. The missing data appear as fill values.
- Fill values appear in the input radiometer L1B_TB_E product. If only some of the input that contributes to a particular grid cell is fill data, the Level L1C_TB_E SPS will most likely be able to generate some output. However, some portion of the L1C_TB_E output for that grid cell may appear as fill values.

SMAP data products employ a specific set of data values to connote that an element is fill. The selected values that represent fill are dependent on the data type. Table 7 lists the values that represent fill in SMAP products based on data type:

Туре	Value	Pattern	
Float32, Float64	-999999	Large, negative number	
Signed8, NormSigned8	-127	Type minimum + 1	
Signed16, NormSigned16	-32767	Type minimum + 1	
Signed24	-8388607	Type minimum + 1	
Signed32	-2147483647	Type minimum + 1	
Signed64	-9223372036854775807	Type minimum + 1	
Unsigned8	254	Type maximum - 1	
Unsigned16	65534	Type maximum - 1	
Unsigned24	16777214	Type maximum - 1	
Unsigned32	4294967294	Type maximum - 1	
Unsigned64	18446744073709551614	Type maximum - 1	
FixedLenString, VarLenString	N/A	Not available	

Table 7: Fill Values in SMAP Data Products

No valid value in the L1C_TB_E product is equal to the values that represent fill. If any exceptions should exist in the future, the L1C_TB_E content will provide a means for users to discern between elements that contain fill and elements that contain genuine data values. This document will also contain a description of the method used to ascertain which elements are fill and which elements are genuine.

The L1C_TB_E product records gaps when entire frames within the time span of a particular data granule do not appear. Gaps can occur under one of two conditions:

- One or more complete frames of data are missing from all data streams.
- The subset of input data that is available for a particular frame is not sufficient to process any frame output.

The L1C_TB_E Product records gaps in the product level metadata. The following conditions will indicate that no gaps appear in the data product:

- Only one instance of the attributes *Extent/rangeBeginningDateTime* and *Extent/rangeEndingDateTime* will appear in the product metadata.
- The character string stored in metadata element *Extent/rangeBeginningDateTime* will match the character string stored in metadata element *OrbitMeasuredLocation/halfOrbitStartDateTime*.
- The character string stored in metadata element *Extent/rangeEndingDateTime* will match the character string stored in metadata element *OrbitMeasuredLocation/halfOrbitStopDateTime*.

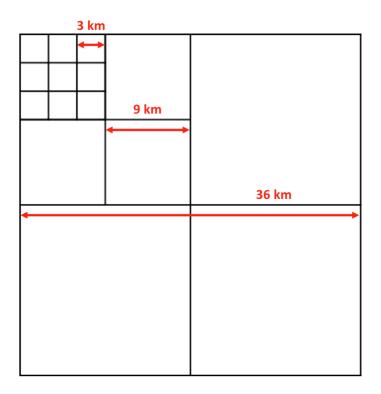
One of two conditions will indicate that gaps appear in the data product:

• The time period covered between *Extent/rangeBeginningDateTime* and *Extent/RangeEndingDateTime* does not cover the entire half orbit as specified in *OrbitMeasuredLocation/halfOrbitStartDateTime* and *OrbitMeasuredLocation/halfOrbitStartDateTime*.

• More than one pair of *Extent/rangeBeginningDateTime* and *Extent/rangeEndingDateTime* appears in the data product. Time periods within the time span of the half orbit that do not fall within the sets of *Extent/rangeBeginningDateTime* and *Extent/rangeEndingDateTime* constitute data gaps.

2.6 Flexible Data Design

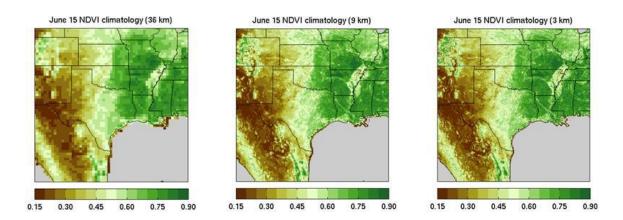
HDF5 format gives the SMAP Level Products a high degree of flexibility. This flexibility in turn gives SMAP end product users the capability to write software that does not need to be modified to accommodate unforeseeable changes in the SMAP products. Since changes to the products are certain to take place over the life of the SMAP mission, users are encouraged to use software techniques that take advantage of some of the features in HDF5.


For example, users can write a product reader that selects only those product data elements they wish to read from an SMAP Level Product file. With the appropriate design, this software will not need to change, regardless of the number, the size, or the order of the current data product entries. Indeed, the only changes users need to implement would take place if they should choose to read a newly defined data element after a product upgrade.

For those users who wish to extract a specific subset of the data from an SMAP Product, the HDF5 routines H5Dopen and H5Dread (h5dopen_f and h5dread_f in FORTRAN) are very useful. H5Dopen requires two input parameters, the first is an HDF5 file/group identifier, the second is a character string that contains the name of a Dataset. H5Dopen returns the identifier for the specified Dataset in the product file. HDF5 routine H5Dread then uses the Dataset identifier to fetch the contents. H5Dread places the contents of the Dataset in a specified output variable.

Once the data element is located and read, users can generate standardized code that reads the metadata associated with each element. Users of the SMAP Level Products should employ the same methods to read metadata and standard data elements.

3 EASE 2.0 Grid

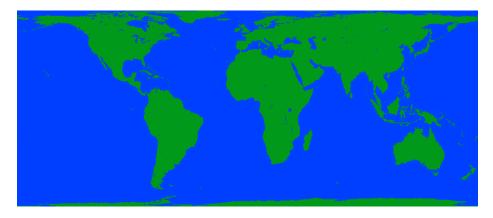

The data in the SMAP L1C_TB_E product are presented in three projections: global cylindrical projection, north polar projection and south polar projection. The projections are based on NSIDC EASE 2.0 Grid specifications for SMAP. Within each projection, the data are organized into fore-looking and aft-looking groups. Each group contains TB observations, instrument viewing geometry information, and quality bit flags. The EASE 2.0 Grid has a flexible formulation. By adjusting one scaling parameter it is possible to generate a family of multi-resolution grids that "nest" within one another. The nesting can be made "perfect" in that smaller grid cells can be tessellated to form larger grid cells, as shown in Fig. 2.

This feature of perfect nesting provides SMAP data products with a convenient common projection for both high-resolution radar observations (now unavailable) and low-resolution radiometer observations, as well as their derived geophysical products.

A nominal EASE 2.0 Grid dimension of 9 km has been selected for the enhanced L1C_TB_E and L2/3_SM_P_E products. A comparison of EASE 2.0 Grid at 36 km, 9 km, and 3 km is shown in Fig. 3.

Figure 3: Example of ancillary NDVI climatology data displayed on the SMAP 36-km, 9-km, and 3-km grids.

For brevity, the three projections (global cylindrical, north polar and south polar) used by the enhanced L1C_TB_E product are assigned with the following three-letter designators thereafter in this documentt. Examples of these projections are shown in Fig. 4.


- Global Cylindrical: M09
- North Polar: N09
- South Polar: S09

(a) Northern Hemisphere on EASE 2.0 Grid projection (Figure credited to NSIDC)

(b) Southern Hemisphere on EASE 2.0 Grid projection (Figure credited to NSIDC)

(c) Global Cylindrical EASE 2.0 Grid projection (Figure credited to NSIDC)

Figure 4: EASE 2.0 Grid examples: (a) North polar projection, (b) South polar projection, and (c) Global projection.

The data in the enhanced SMAP L1C_TB_E product are available on global cylindrical as well as on north/south polar projections. All elements in L1C_TB_E are stored as HDF5 Datasets. Only cells that are covered by the swath for a given projection are written in the product.

4 PRODUCT DEFINITION

4.1 Overview

The enhanced SMAP L1C_TB_E product is derived from the enhanced SMAP L1B_TB_E product, which contains interpolated radiometer data on a set of 9-km grids based on the time-ordered brightness temperature (TB) data in the standard SMAP L1B_TB product. To generate the enhanced L1C_TB_E product the processing software ingests the L1B_TB_E data to extract and copy the same data fields as in the current standard SMAP L1C_TB product. This consistency between the standard L1C_TB and the enhanced L1C_TB_E ensures legacy compatibility. Only cells that are covered by the actual swath for a given projection are written in the product.

The data in the enhanced SMAP L1C_TB_E product are presented in three projections: 9-km global projection, 9-km north polar projections and 9-km south polar projection. The projections are based on the National Snow and Ice Data Center (NSIDC) Equal-Area Scalable Earth (EASE-2.0) Grid specifications for SMAP. Within each projection, the data are divided into fore-looking and aft-looking views. For each projection and view, the product contains T_B observations, instrument viewing geometry information, and quality bit flags.

4.2 Product Names

L1C_TB_E data product file names conform to the following convention:

SMAP_L1C_TB_E[Orbit Number]_[A|D]_[First Date/Time Stamp]_[Composite Release ID]_[Product Counter].[extension]

Example: SMAP_L1C_TB_E_00934_A_20141225T074951_ R00400_002.h5

Orbit Number	A five-digit sequential number of the orbit flown by the SMAP spacecraft when the data was acquired. Orbit 0 begins at launch.
Half Orbit Designator	'A' for 6:00 pm ascending pass; 'D' for 6:00 am descending pass.
First Date/Time Stamp	Date/time stamp in Universal Coordinated Time (UTC) of the first data element that appears in the product. The stamp conforms to the YYYYMMDDThhmmss convention.
Composite Release ID	An ID that incorporates changes to any processing condition that might impact product results. The Composite Release ID contains three other shorter ID's: [R][Launch Indicator][Major ID][Minor ID]. The Launch Indicator distinguishes between pre-launch or pre- instrument commissioned data. ('0' for simulated or preliminary observations whereas '1' for observations at or after the time of

	instrument commissioning) A two-digit Major ID indicates major releases due to changes in algorithm or processing approach. A two-digit Minor ID indicates minor releases due to changes not considered by a change in Major ID.
Product Counter	A three-digit counter that tracks the number of times that a particular product type for a specific half orbit has been generated.
Extension	'.h5' for science product data and '.qa' for QA product data.

4.3 Volume

The following estimates represent the combined data volume of metadata and the actual science data of the product:

Daily volume: 3074.27 MBytes

Yearly volume: 1,122.11 GBytes

4.4 L1C_TB_E Product Metadata

The metadata elements in the L1C_TB_E product appear in two forms. One form appears in one or more Attributes within the Metadata Group. Combined, those Attributes contain a complete representation of the product metadata. The content conforms to the ISO 19115-2 models in ISO 19139 compliant XML.

The second form of the metadata appears in a set of HDF5 groups under the Metadata Group. Each of these HDF5 Groups represents one of the major classes in the ISO structure. These groups contain a set of HDF5 attributes. Each HDF5 Attribute set represents a specific ISO attribute of the associated ISO class. Although this representation inherits design from the ISO model, it does not completely conform to the model. In many cases, the names of the HDF5 Attributes match those used in the ISO model. In some situations, names were changed to provide greater clarity to SMAP users who are not familiar with the ISO model. Furthermore, to ease metadata searches, the structure of Groups within Groups was limited to four levels.

Table 8 describes the subgroups of the Metadata group, and the attributes within each group. The first column of Table 8 specifies a major class in the ISO 19115 metadata model. The second column provides the name of the HDF5 Group under "/Metadata" where attributes associated with the corresponding class will appear. The third column lists the names of the subgroups and attributes where specific metadata values appear. The fourth column provides valid values for each element. Constant values appear with no diacritical marks. Variable values are encapsulated by angle brackets. All of the metadata elements that appear in table 8 should also appear in every L1C_TB_E Product file.

Table 8: Granule Level Metadata in the L1C_TB_E Product

Representative ISO Class	SMAP HDF5 Metadata Subgroup	SMAP HDF5 Subpath	SMAP HDF5 Attribute	Definition
			antennaRotationRate	<the (rpm)="" antenna="" in="" minute="" per="" rate="" revolution="" rotation=""></the>
		platform	description	The SMAP observatory houses an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath. The bus is a 3 axis stabilized spacecraft that provides momentum compensation for the rotating antenna.
			identifier	SMAP
MD_AcquisitionInformation	AcquisitionInformation	radar,	description	The SMAP radar instrument employs an L-band conically scanned system and SAR processing techniques to achieve moderate resolution (1 km) backscatter measurements over a very wide 1000 km swath.
		radiometer	identifier	SMAP SAR
			type	L-band Synthetic Aperture Radar
		platformDocument, radarDocument, radiometerDocument	edition publicationDate title	<the available<br="" document,="" edition="" if="" of="" publication="" reference="" the="">to the general public.> <the available="" date="" document,="" if="" of="" publication="" reference="" the="" to<br="">the general public.> <the document,="" if<br="" of="" publication="" reference="" the="" title="">available to the general public.></the></the></the>
			evaluationMethodType	<the "directinternal"<br="" data="" evaluation="" method.="" of="" quality="" type="">means the method of evaluating the quality of a dataset based on inspection of items within the dataset, where all data required is internal to the dataset being evaluated.></the>
DQ_DataQuality		DomoinConsistence	measureDescription	<the consistency="" description="" domain="" measurement.="" of="" the=""></the>
	DataQuality	DomainConsistency	nameOfMeasure	<the measurements="" name="" of="" the=""></the>
			unitOfMeasure	Percent
			value	<a 0="" 100="" and="" between="" measure="">
		-		
		CompletenessOmission	evaluationMethodType	<the "directinternal"<="" data="" evaluation="" method.="" of="" quality="" td="" type=""></the>

			means the method of evaluating the quality of a dataset based on inspection of items within the dataset, where all data required is internal to the dataset being evaluated.>
		measureDescription	
		nameOfMeasure	Percent of Missing Data
		unitOfMeasure	Percent
		value	<a 0="" 100="" and="" between="" measure="">
		scope	<a are="" data="" elements="" for<br="" list="" of="" product,="" that="" the="" used="">DataQuality measurement>
		CompositeReleaseID	<smap associated="" composite="" data="" id="" product="" release="" this="" with=""></smap>
		ECSVersionID	<identifier (eosdis<br="" delivered="" ecs="" major="" specifies="" that="" to="" version="">Core System). Value runs from 001 to 999></identifier>
		SMAPShortName	<the data="" mission="" name="" of="" product="" product.="" short="" smap="" this=""></the>
		UUID	
		abstract	
		characterSet	utf8
		creationDate	<date created="" data="" file="" product="" this="" was="" when=""></date>
DS Dataset/		credit	<identify authorship="" generation<br="" institutional="" of="" product="" the="">software and the data system that automates its production.></identify>
MD_DataIdentification	DatasetIdentification	fileName	<the data="" file.="" name="" of="" product="" this=""></the>
		language	eng
		originatorOrganizationName	Jet Propulsion Laboratory
		otherCitationDetails	<the description="" generation="" of="" product="" software<br="" state="" the="">for this data product file.></the>
		purpose	<the data="" description="" file.="" of="" product="" purpose="" the="" this=""></the>
		shortName	<the 8="" characters.="" data="" ecs="" in="" name="" of="" product="" short="" this=""></the>
		spatialRepresentationType	grid
		status	onGoing
		topicCategory	geoscientificInformation
EX_Extent		 description	<the and="" data="" description="" extents="" of="" product.="" spatial="" temporal="" the=""></the>
	Extent	eastBoundLongitude	<the boundary="" data="" eastern="" extent="" most="" of="" product<br="" spatial="" the="">covers (Longitude measure between -180 degrees and 180 degrees)></the>

			northBoundLatitude	<the (latitude="" -90="" 90="" and="" between="" boundary="" covers="" data="" degrees="" degrees)="" extent="" measure="" most="" northern="" of="" product="" spatial="" the=""></the>
			rangeBeginningDateTime	Character string that indicates the date and time of the initial data element in the product>
			rangeEndingDateTime	Character string that indicates the date and time of the final data element in the product.>
			southBoundLatitude	<the boundary="" data="" extent="" most="" of="" product<br="" southern="" spatial="" the="">covers (Latitude measure between -90 degrees and 90 degrees)></the>
			westBoundLongitude	< Construction of the spatial extent the data product covers (Longitude measure between -180 degrees and 180 degrees)>
			cellGeometry	<indication area="" as="" data="" grid="" of="" or="" point=""></indication>
			controlPointAvailability	<indication (0="" 1="" and="" are="" available="" available)="" control="" implies="" not="" of="" or="" points="" whether=""></indication>
			dimensionSize	<the arrays="" dimension="" in="" of="" projection<br="" size="" specific="" the="" this="">are organized in this data product file></the>
	GridSpatialRepresentation	GlobalProjection, NorthPolarProjection, SouthPolarProjection	georeferencedParameters	<the conversion="" for="" geographic="" information="" interest="" location="" map="" of="" parameters="" projection="" the="" to="" used=""></the>
			numberOfDimensions	<the arrays="" dimensions="" in="" number="" of="" specific<br="" the="" this="">projection are organized in this data product file></the>
			orientationParameterAvailability	<indication are="" available<br="" not="" of="" or="" orientation="" parameters="" whether="">(0 implies not available and 1 implies available)></indication>
			resolution	<the data="" each="" in="" kilometer="" point="" represents,="" resolution="" spatial=""></the>
MD_GridSpatialRepresentat ion			transformationParameterAvailability	<the for="" indication="" of="" parameters="" the="" transformation<br="" whether="">exists or not (0 implies not available and 1 implies available)></the>
			edition	The version of the said definition decompany.
				<the definition="" document="" grid="" of="" the="" version=""></the>
			publicationDate	<the date="" definition="" document="" grid="" of="" publication="" the=""></the>
			title	<the definition="" document="" grid="" of="" the="" title=""></the>
			description	<the applied="" data="" definition="" description="" for="" generation="" grid="" of="" product="" the=""></the>
		GridDefinition	identifier	< The short name identifying the grid definition of this data product>
LI_Lineage/LE_Source	Lineage	L1B_TB	DOI	<a associated="" digital="" identifier="" input="" object="" product.="" the="" this<br="" with="">field appears only for the Lineage class that describes the SMAP science data product.>
			creationDate	<date corresponding="" created="" file="" input="" product="" the="" was="" when=""></date>

JPL D-56290 SMAP Enhanced Level 1C Radiometer Data Product Specification Document

			description	<description data<="" each="" files="" generate="" input="" of="" th="" the="" this="" to="" used=""></description>
			*	product.>
			fileName	<pre><the corresponding="" file.="" input="" name="" of="" product="" the=""></the></pre>
			identifier	<the associated="" data="" input="" name="" product.="" science="" short="" smap="" the="" with=""></the>
			resolution	<the data="" each="" in="" kilometer="" point="" represents,="" resolution="" spatial=""></the>
			version	<the associated="" composite="" data="" id="" input="" product.="" smap="" the="" version="" with=""></the>
			creationDate	Solution <
		EASEGRID_LAT_M, InputConfiguration,	description	<description ancillary="" data="" each="" file="" generate="" input="" of="" product.="" this="" to="" used=""></description>
		MetadataConfiguration,	fileName	<the ancillary="" file.="" input="" name="" of="" the=""></the>
		OutputConfiguration, RunConfiguration	version	<the ancillary="" file.="" input="" number="" of="" the="" version=""></the>
		Tuncomigatutor		
			argumentOfPerigee	<the angle="" between="" in="" of="" orbit="" plane="" point<br="" satellite="" smap="" the="">of perigee and ascending node. The angle is measured in the direction of spacecraft motion.></the>
			cycleNumber	<the 117="" a="" after="" cycle="" flies="" in="" orbits.<br="" repeats="" satellite="" smap="" that="">This element specifies the cycle of orbits when the data were taken. First cycle is assigned the number 1.></the>
			eccentricity	<the eccentricity="" of="" orbit.="" satellite="" the=""></the>
			epoch	<the data="" effective="" in="" of="" orbitmeasuredlocation<br="" the="" time="">class. This may be identical to the equatorCrossingDateTime.></the>
			equatorCrossingDateTime	
SD_OrbitMeasuredLocation	OrbitMeasuredLocation		equatorCrossingLongitude	<the ascending="" crossing="" current="" for="" longitude="" node="" of="" orbit.="" the=""></the>
			halfOrbitStartDateTime	<a and="" date="" instant="" of="" specifies="" stamp="" that="" the="" the<br="" time="">spacecraft crosses either the southernmost point or the northernmost point in its path, marking the beginning of the half orbit.>
			halfOrbitStopDateTime	
			inclination	<the 90="" a="" an="" and="" angle="" between="" degrees="" earth.="" equatorial="" greater="" indicates="" of="" orbit="" orbital="" path.="" plane="" retrograde="" spacecraft="" than="" the=""></the>
			meanMotion	< The constant angular speed that would be required for a body

			travelling in an undisturbed elliptical orbit with the specified
			semimajor axis to complete one revolution in the actual orbital
			period, expressed as a number of revolutions per day.>
			<smap 1="" 2="" and="" appear="" half="" in="" level="" orbit<="" products="" td=""></smap>
		orbitDirection	granules. This element provides direction of orbital path relative to equatorial plane. Values are "ascending" or "descending">
			< The SMAP satellite flies in a cycle the repeats after 117 orbits.
		orbitPathNumber	This element specifies which of the 117 possible paths the spacecraft flew when the data in the file were acquired. The orbitPathNumber varies from 1 to 117.>
		orbitPeriod	<time a="" complete="" orbit.="" required="" spacecraft="" the="" to=""></time>
		referenceCRS	
		revNumber	<the beginning="" count="" from="" mission="" of="" orbit="" orbits="" that<br="" the="" to="">the spacecraft flew when the data in the file were acquired. Orbit zero begins at launch and extends until the spacecraft crosses the southernmost point in its path for the first time. Orbit one commences at that instant.></the>
		rightAscensionAscendingNode	<the angle="" ascending="" eastward="" equatorial="" equinox="" from="" node.="" on="" orbit="" plan="" the="" to="" vernal=""></the>
		semiMajorAxis	<the axis="" length="" of="" orbit.="" semi-major="" spacecraft="" the=""></the>
		ATBDDate	<time atbd="" date="" of="" release="" specifies="" stamp="" that="" the=""></time>
		ATBDTitle	<the atbd="" of="" the="" title=""></the>
		ATBDVersion	<version atbd.="" for="" identifier="" the=""></version>
		SWVersionID	<a 001="" 999="" from="" identifier="" runs="" software="" that="" to="" version="">
		algorithmDate	<date algorithm.="" associated="" current="" of="" the="" version="" with=""></date>
		algorithmDescription	<descriptive about="" algorithm(s)="" data="" for="" generation="" in="" product="" product.="" software="" text="" the="" this=""></descriptive>
		algorithmSelection	<the algorithm(s)="" applied="" data="" generate="" product.="" this="" to=""></the>
LI_Lineage/LE_ProcessStep	ProcessStep	algorithmTitle	<the algorithm="" data="" for="" name="" of="" product.="" representative="" the="" this=""></the>
	· · · · · · · · · ·	algorithmVersionID	<identifier 001="" 999="" algorithm="" current="" from="" runs="" specifies="" that="" the="" to="" value="" version.=""></identifier>
		documentDate	<release date="" description="" document.="" for="" software="" the=""></release>
		documentVersion	<version description="" document.="" for="" identifier="" software="" the=""></version>
		documentation	
		epochJulianDate	<julian 2451545="" date="" epoch="" j2000,="" of="" the=""></julian>
		 epochUTCDateTime	<utc 2000-01-<br="" date="" epoch="" j2000,="" of="" the="" time="">01T11:58:55.816Z></utc>
		identifier	<name data="" for="" generation="" of="" product="" software="" the="" this=""></name>

JPL D-56290 SMAP Enhanced Level 1C Radiometer Data Product Specification Document

		parameterVersionID	<identifier 001="" 999.="" current="" from="" of="" parameters.="" processing="" runs="" specifies="" that="" the="" to="" value="" version=""></identifier>
		processDescription	<short by="" concept="" data="" description="" generation="" of="" processing="" product="" software.="" the=""></short>
		processor	<name facility="" generation="" of="" product="" the=""></name>
		softwareDate	<a date="" generate="" software="" specifies="" stamp="" that="" this<br="" to="" used="" when="">product was released.>
		softwareTitle	<the facility="" generation="" of="" product="" the="" title=""></the>
		stepDateTime	< A character string that specifies the date and the time when the product was generated.>
		timeVariableEpoch	<the epoch="" for="" mission="" of="" smap="" the="" time="" variable=""></the>
		SMAPShortName	<the data="" mission="" name="" of="" product="" product.="" short="" smap="" this=""></the>
		characterSet	utf8
DS_Series/MD_DataIdentifi	ProductSpecificationDocu	edition	<edition document="" for="" identifier="" product="" specification="" the=""></edition>
cation	ment	language	eng
		publicationDate	<date document="" of="" product="" publication="" specification="" the=""></date>
		title	<the document="" of="" product="" specification="" the="" title=""></the>
		MissingSamples	<the data="" in="" missing="" number="" of="" products="" samples="" this=""></the>
DQ_DataQuality	QA	OutOfBoundsSamples	<the are="" boundary="" exceeding="" number="" of="" predefined="" samples="" that="" the=""></the>
DQ_DataQuanty		QAPercentOutOfBoundsData	<percent are="" exceeding="" of="" predefined<br="" samples="" that="" the="">boundary with respect tot the total samples in this data product></percent>
		TotalSamples	<the all="" data="" in="" number="" of="" product="" samples="" this=""></the>
DS_Dataset/MD_DataIdenti	QADatasetIdentification	abstract	An ASCII product that contains statistical information on data product results. These statistics enable data producers and users to assess the quality of the data in the data product granule.
fication	QADatasettuentineation	creationDate	<the date="" generated.="" product="" qa="" that="" the="" was=""></the>
		fileName	<the name="" of="" product.="" qa=""></the>
		CompositeReleaseID	<smap composite="" data="" generate="" id="" identifies="" product="" release="" that="" the="" this="" to="" used=""></smap>
DS_Series/MD_DataIdentifi cation	SeriesIdentification	ECSVersionID	<identifier 001="" 999="" delivered="" ecs.="" from="" major="" runs="" specifies="" that="" to="" value="" version=""></identifier>
		abstract	
		characterSet	utf8

credit	<identify authorship="" generation<br="" institutional="" of="" product="" the="">software and the data system that automates its production.></identify>
format	HDF5
formatVersion	<the for="" generation="" hdf5="" library="" of="" product="" the="" used="" version=""></the>
identifier_product_DOI	<digital 1c="" for="" hires="" identifier="" level="" object="" product="" s0="" the=""></digital>
language	eng
longName	<the (up="" 80="" characters="" data="" long="" long)="" name="" of="" product="" this="" to=""></the>
maintenanceAndUpdateFrequency	As needed
maintenanceDate	<specifies a="" anticipated="" be="" date="" might="" next="" product="" the="" this="" to="" update="" when=""></specifies>
mission	Soil Moisture Active Passive (SMAP)
otherCitationDetails	<the data="" description="" file.="" for="" generation="" of="" product="" software="" state="" the="" this=""></the>
pointOfContact	<the daac="" data="" distributed="" from.="" is="" name="" of="" product="" the="" this=""></the>
purpose	<the data="" description="" file.="" of="" product="" purpose="" the="" this=""></the>
resourceProviderOrganizationName	National Aeronautics and Space Administration
revisionDate	<date and="" data="" generate="" of="" product.="" release="" software="" that="" the="" this="" time="" to="" used="" was=""></date>
shortName	<the 8="" characters.="" data="" ecs="" in="" name="" of="" product="" short="" this=""></the>
spatialRepresentationType	grid
status	Ongoing
topicCategory	geoscientificInformation

4.5 Data Structure

The enhanced SMAP L1C_TB_E product is derived from the enhanced SMAP L1B_TB_E product, which represents the time-ordered T_B observations in the standard L1B_TB interpolated on a 9 km grid. To generate the enhanced L1C_TB_E product the processing software ingests the enhanced L1B_TB_E data product and copies the fields that were in the standard L1C_TB data product design for legacy compatibility. Only cells that are covered by the actual swath for a given projection are written in the product. The data in the enhanced SMAP L1C_TB_E product are presented in three projections: global projection, north polar projections and south polar projection. Within each projection, the data are organized into fore-looking and aft-looking groups. Each group contains T_B observations, instrument viewing geometry information, and quality bit flags. The data in the enhanced SMAP L1C_TB_E product are presented in three 9-km projections:

- Global projection (M09 grid),
- North polar projection (N09 grid), and
- South polar projection (S09 grid).

The projections are based on NSIDC's EASE 2.0 Grid specifications for SMAP. All elements in L1C_TB_E are stored as HDF5 Datasets. Each projection corresponds to a separate HDF5 Group. Within each projection, the data are provided in fore-looking and aft-looking views. Each group contains T_B observations, instrument viewing geometry information, and quality bit flags. The fore-looking set refers to information derived from L1B_TB observations acquired in the forward-looking portion of the scans when the antenna scan angle falls between -90° and $+90^{\circ}$; the aft-looking portion of the scans. Only those cells that are covered by the radiometer swath for a given projection are written in the product. This organization is reflected schematically in Fig 5.

L1C_TB_E								
N09 Nor	N09 North PolarM09 GlobalS09 South Polar					th Polar		
EASE 2	2.0 Grid		EASE 2	2.0 Grid		EASE 2	2.0 Grid	
Fore-	Aft-		Fore-	Aft-		Fore-	Aft-	
looking	looking		looking	looking		looking	looking	
1-D	1-D		1-D	1-D		1-D	1-D	
Array1	Array1		Array1	Array1		Array1	Array1	
1-D	1-D		1-D	1-D		1-D	1-D	
Array2	Array2		Array2	Array2		Array1	Array2	
:	:		:	:		:	:	
1-D	1-D		1-D	1-D		1-D	1-D	
ArrayN	ArrayN		ArrayN	ArrayN		ArrayN	ArrayN	

Figure 5: L1C_TB_E data organization according to projections and azimuth directions.

Below are the HDF Group designations of these projections in the product file:

- All data elements that are represented on the Global Cylindrcal EASE 2.0 Grid appear in the HDF5 Global Cylindrical Projection Group.
- All data elements that are represented on the North Polar EASE 2.0 Grid appear in the HDF5 North Polar Projection Group.
- All data elements that are represented on the South Polar EASE 2.0 Grid appear in the HDF5 South Polar Projection Group.

Table 9 describes the output fields of a typical L1C_TB_E half-orbit granule in both forelooking and aft-looking groups. This overall data organization is repeated for both ascending and descending granules and for all three EASE 2.0 Grid projections. Data fields are stored as one-dimensional arrays of size N, where N is the number of valid cells covered by the radiometer swath on the grid. Note that N varies with projections, but remains the same for both forelooking and aft-looking views within a given projection.

Azimuth Direction	Output Parameter	Precision	Byte	Unit	Section
	cell_row	Uint16	2	N∖A	4.6.1
	cell_col	Uint16	2	N∖A	4.6.2
	cell_lat	Float32	4	Degree	4.6.3
	cell_lon	Float32	4	Degree	4.6.4
	cell_grid_surface_status	Uint16	1	N∖A	4.6.5
	cell_tb_time_seconds_fore	Float64	8	Second	4.6.6
	cell_tb_time_utc_fore	Char	24	N∖A	4.6.7
	cell_lat_centroid_fore	Float32	4	Degree	4.6.8
	cell_lon_centroid_fore	Float32	4	Degree	4.6.9
	cell_antenna_scan_angle_fore	Float32	4	Degree	4.6.10
	cell_boresight_incidence_fore	Float32	4	Degree	4.6.11
	cell_solar_specular_theta_fore	Float32	4	Degree	4.6.12
	cell_solar_specular_phi_fore	Float32	4	Degree	4.6.13
	cell_tb_h_surface_corrected_fore	Float32	4	Kelvin	4.6.14
	cell_tb_v_surface_corrected_fore	Float32	4	Kelvin	4.6.15
	cell_surface_water_fraction_mb_h	Float32	4	N∖A	4.6.16
	cell_surface_water_fraction_mb_v	Float32	4	N∖A	4.6.17
Г	cell_tb_h_fore	Float32	4	Kelvin	4.6.18
Fore-	cell_tb_v_fore	Float32	4	Kelvin	4.6.19
Looking	cell_tb_3_fore	Float32	4	Kelvin	4.6.20
Data Arrays	cell_tb_4_fore	Float32	4	Kelvin	4.6.21
	cell_number_measurements_h_fore	Uint16	2	N∖A	4.6.22
	cell_number_measurements_v_fore	Uint16	2	N∖A	4.6.23
	cell_number_measurements_3_fore	Uint16	2	N∖A	4.6.24
	cell_number_measurements_4_fore	Uint16	2	N∖A	4.6.25
	cell_tb_error_h_fore	Float32	4	Kelvin	4.6.26
	cell_tb_error_v_fore	Float32	4	Kelvin	4.6.27
	cell_tb_error_3_fore	Float32	4	Kelvin	4.6.28
	cell_tb_error_4_fore	Float32	4	Kelvin	4.6.29
	cell_tb_qual_flag_h_fore	Uint16	2	N∖A	4.6.30
	cell_tb_qual_flag_v_fore	Uint16	2	N∖A	4.6.31
	cell_tb_qual_flag_3_fore	Uint16	2	N∖A	4.6.32
	cell_tb_qual_flag_4_fore	Uint16	2	N∖A	4.6.33
	cell_tb_time_seconds_aft	Float64	8	Second	4.6.6
Aft-	cell_tb_time_utc_aft	Char	24	N∖A	4.6.7
	cell_lat_centroid_aft	Float32	4	Degree	4.6.8
Looking	cell_lon_centroid_aft	Float32	4	Degree	4.6.9
Data Arrays	cell_antenna_scan_angle_aft	Float32	4	Degree	4.6.10
	cell_boresight_incidence_aft	Float32	4	Degree	4.6.11

Table 9: L1C_TB_E output parameters

			-	
cell_solar_specular_theta_aft	Float32	4	Degree	4.6.12
cell_solar_specular_phi_aft	Float32	4	Degree	4.6.13
cell_tb_h_surface_corrected_fore	Float32	4	Kelvin	4.6.14
cell_tb_v_surface_corrected_fore	Float32	4	Kelvin	4.6.15
cell_surface_water_fraction_mb_h	Float32	4	N∖A	4.6.16
cell_surface_water_fraction_mb_v	Float32	4	N\A	4.6.17
cell_tb_h_aft	Float32	4	Kelvin	4.6.18
cell_tb_v_aft	Float32	4	Kelvin	4.6.19
cell_tb_3_aft	Float32	4	Kelvin	4.6.20
cell_tb_4_aft	Float32	4	Kelvin	4.6.21
cell_number_measurements_h_aft	Uint16	2	N∖A	4.6.22
cell_number_measurements_v_aft	Uint16	2	N∖A	4.6.23
cell_number_measurements_3_aft	Uint16	2	N∖A	4.6.24
cell_number_measurements_4_aft	Uint16	2	N∖A	4.6.25
cell_tb_error_h_aft	Float32	4	Kelvin	4.6.26
cell_tb_error_v_aft	Float32	4	Kelvin	4.6.27
cell_tb_error_3_aft	Float32	4	Kelvin	4.6.28
cell_tb_error_4_aft	Float32	4	Kelvin	4.6.29
cell_tb_qual_flag_h_aft	Uint16	2	N\A	4.6.30
cell_tb_qual_flag_v_aft	Uint16	2	N\A	4.6.31
cell_tb_qual_flag_3_aft	Uint16	2	N\A	4.6.32
cell_tb_qual_flag_4_aft	Uint16	2	N\A	4.6.33

4.6 Parameter Definitions

All parameter definitions below are valid for fore-looking and aft-looking groups, as well as ascending and descending half-orbit granules for all three EASE 2.0 Grid projections.

4.6.1 **cell_row**

Zero-based row index of a 9-km EASE 2.0 grid cell.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0
Valid_max:	1623 (Global Cylindrical projection), 1999 (North
	Polar projection and South Polar projection)
Unit:	N\A

4.6.2 **cell_col**

Zero-based column index of a 9-km EASE 2.0 grid cell.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0
Valid_max:	3855 (Global Cylindrical projection), 1999 (North
	Polar projection and South Polar projection)
Unit:	N\A

4.6.3 **cell_lat**

Latitude of the center of a 9-km EASE 2.0 grid cell.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	-90.0
Valid_max:	+90.0
Unit:	Degree

4.6.4 **cell_lon**

Longitude of the center of a 9-km EASE 2.0 grid cell.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	-180.0
Valid_max:	+180.0
Unit:	Degree

4.6.5 cell_grid_surface_status

Surface type (land or water) as determined by the antenna boresight location.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0; indicates land
Valid_max:	1; indicates water
Unit:	N\A

4.6.6 **cell_tb_time_seconds_[fore | aft]**

UTC acquisition times as reported in the L1B_TB_E product. The result is expressed in J2000 seconds (the number of seconds since 11:58:55.816 on January 1, 2000 UT).

Precision:	Float64
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0
Valid_max:	N\A
Unit:	Second

4.6.7 cell_tb_time_utc_[fore | aft]

UTC acquisition times in ASCII string representation as reported in the L1B_TB_E product. The result is expressed in J2000 seconds (the number of seconds since 11:58:55.816 on January 1, 2000 UT).

Precision:	Char24
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	'2015-01-31T00:00:00.000Z'
Valid_max:	N\A
Unit:	N\A

4.6.8 cell_centroid_lat_[fore | aft]

Latitudes of L1B_TB observations interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	-90.0
Valid_max:	+90.0
Unit:	Degree

4.6.9 cell_centroid_lon_[fore | aft]

Longitudes of L1B_TB observations interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	-180.0
Valid_max:	+180.0
Unit:	Degree

4.6.10 cell_antenna_scan_angle_[fore | aft]

Antenna scan angles of L1B_TB observations interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation. The antenna scan angle is defined as the azimuth angle of the antenna measured from the ground track vector. The azimuth angle is 0° when the antenna points in the same direction as the ground track vector and increases clockwise (*i.e.*, towards +360°) when viewed from above.

Precision: Float32

Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0.0
Valid_max:	360.0
Unit:	Degree

4.6.11 cell_boresight_incidence_[fore | aft]

Incidence angles of L1B_TB observations of L1B_TB observations interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation. The incidence angle is defined as the included angle between the antenna boresight vector and the normal to the Earth's surface.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0.0
Valid_max:	90.0
Unit:	Degree

4.6.12 cell_solar_specular_theta_angle_[fore | aft]

Elevation component of the solar specular angles of L1B_TB observations interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0.0
Valid_max:	90.0
Unit:	Degree

4.6.13 cell_solar_specular_phi_angle_[fore | aft]

Azimuth component of solar specular angles of L1B_TB observations interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0.0
Valid_max:	360.0
Unit:	Degree

4.6.14 cell_tb_h_surface_corrected_[fore | aft]

Surface-corrected L1B_TB horizontally polarized brightness temperatures interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation. Depending on the value of the cell_grid_surface_status data field, this surface-corrected field could either refer to water-corrected TB (when cell_grid_surface_status = 0) or land-correted TB (when cell_grid_surface_status = 1).

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0.0
Valid_max:	330.0
Unit:	Kelvin

4.6.15 cell_tb_v_surface_corrected_[fore | aft]

Surface-corrected L1B_TB vertically polarized brightness temperatures interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation. Depending on the value of the cell_grid_surface_status data field, this surface-corrected field could either refer to water-corrected TB (when cell_grid_surface_status = 0) or land-correted TB (when cell_grid_surface_status = 1).

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0.0
Valid_max:	330.0
Unit:	Kelvin

4.6.16 cell_surface_water_fraction_mb_h_[fore | aft]

Water fraction with the SMAP radiometer main-beam (mb) IFOV weighted by antenna gain pattern at the horizontal polarization.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0.0
Valid_max:	1.0
Unit:	N\A

4.6.17 cell_surface_water_fraction_mb_v_[fore | aft]

Water fraction with the SMAP radiometer main-beam (mb) IFOV weighted by antenna gain pattern at the vertical polarization.

Precision: Float32

Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0.0
Valid_max:	1.0
Unit:	N\A

4.6.18 cell_tb_h_[fore | aft]

L1B_TB horizontally polarized brightness temperatures interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision: Dimension:	Float32 N = Number of grid cells covered by the swath
Valid_min:	N = 1 with below grid certs covered by the swall 0.0
Valid_max:	330.0
Unit:	Kelvin

4.6.19 cell_tb_v_[fore | aft]

L1B_TB vertically polarized brightness temperatures interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0.0
Valid_max:	330.0
Unit:	Kelvin

4.6.20 cell_tb_3_[fore | aft]

L1B_TB 3rd Stokes parameter interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	-50.0
Valid_max:	+50.0
Unit:	Kelvin

4.6.21 cell_tb_4_[fore | aft]

L1B_TB 4th Stokes parameter interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	-50.0
Valid_max:	+50.0
Unit:	Kelvin

4.6.22 cell_number_measurements_h_[fore | aft]

Number of L1B_TB horizontally polarized brightness temperatures interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	1
Valid_max:	1
Unit:	N\A

4.6.23 cell_number_measurements_v_[fore | aft]

Number of L1B_TB vertically polarized brightness temperatures interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	1
Valid_max:	1
Unit:	N\A

4.6.24 cell_number_measurements_3_[fore | aft]

Number of L1B_TB 3rd Stokes parameter interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	1
Valid_max:	1
Unit:	N\A

4.6.25 cell_number_measurements_4_[fore | aft]

Number of L1B_TB 4th Stokes parameter interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	1
Valid_max:	1
Unit:	N\A

4.6.26 cell_tb_error_h_[fore | aft]

Uncertainty of L1B_TB horizontally polarized brightness temperatures interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0
Valid_max:	330
Unit:	Kelvin

4.6.27 cell_tb_error_v_[fore | aft]

Uncertainty of L1B_TB vertically polarized brightness temperatures interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0
Valid_max:	330
Unit:	Kelvin

4.6.28 cell_tb_error_3_[fore | aft]

Uncertainty of L1B_TB 3rd Stokes parameter interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	-50
Valid_max:	50
Unit:	Kelvin

4.6.29 cell_tb_error_4_[fore | aft]

Uncertainty of L1B_TB 4th Stokes parameter interpolated at a 9-km EASE 2.0 grid cell as reported in the L1B_TB_E product after the Backus-Gilbert interpolation.

Precision:	Float32
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	-50
Valid_max:	50
Unit:	Kelvin

4.6.30 cell_tb_qual_flag_h_[fore | aft]

A 16-bit binary string of 1's and 0's indicating the quality of L1B_TB_E data used to derive the L1C_TB_E data. A '0' indicates the L1C_TB_E observations met a given quality criterion as described in L1B_TB_E's tb_qual_flag_h data field; a '1' indicates that the same criterion was not met in L1C_TB_E. Bit position '0' refers to the least significant digit.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0
Valid_max:	65,536
Unit:	N\A

Bit Position	Bit Value and Interpretation
0	0 = Observation has acceptable quality
	1 = Observation does not have acceptable quality
1	0 = Observation within physical range
1	1 = Observation beyond physical range
2	0 = RFI was not detected in the observation
2	1 = RFI was detected in the observation
3	0 = RFI was detected and corrected in the observation
3	1 = RFI was detected but not correctable in the observation
4	0 = Observation had acceptable NEDT
4	1 = Observation did not have acceptable NEDT
5	0 = Direct sun correction was successful
5	1 = Direct sun correction was not successful
C	0 = Reflected sun correction was successful
6	1 = Reflected sun correction was not successful
7	0 = Reflected moon correction was successful
7	1 = Reflected moon correction was not successful
8	0 = Direct galaxy correction was successful
	1 = Direct galaxy correction was not successful
9	0 = Reflected galaxy correction was successful

	1 = Reflected galaxy correction was not successful
10	0 = Atmosphere correction was successful
	1 = Atmosphere correction was not successful
11	0 = Faraday rotation correction was successful
	1 = Faraday rotation correction was not successful
10	0 = Observation was a valid value
12	1 = Observation was a null value
13	0 = Observation was within half orbit
	1 = Observation was outside half orbit
14	$0 = TA$ minus TA_FILTERED was less than a threshold
	$1 = TA$ minus TA_FILTERED was greater than a threshold
15	0 = Observation was free of RFI
	1 = Observation was RFI contaminated

4.6.31 cell_tb_qual_flag_v_[fore | aft]

A 16-bit binary string of 1's and 0's indicating the quality of L1B_TB_E data used to derive the L1C_TB_E data. A '0' indicates the L1C_TB_E observations met a given quality criterion as described in L1B_TB_E's tb_qual_flag_v data field; a '1' indicates that the same criterion was not met in L1C_TB_E. Bit position '0' refers to the least significant digit.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0
Valid_max:	65,536
Unit:	N\A

Bit Position	Bit Value and Interpretation
0	0 = Observation has acceptable quality
	1 = Observation does not have acceptable quality
1	0 = Observation within physical range
1	1 = Observation beyond physical range
2	0 = RFI was not detected in the observation
2	1 = RFI was detected in the observation
3	0 = RFI was detected and corrected in the observation
5	1 = RFI was detected but not correctable in the observation
4	0 = Observation had acceptable NEDT
	1 = Observation did not have acceptable NEDT
5	0 = Direct sun correction was successful
5	1 = Direct sun correction was not successful
6	0 = Reflected sun correction was successful
6	1 = Reflected sun correction was not successful
7	0 = Reflected moon correction was successful
	1 = Reflected moon correction was not successful

8	0 = Direct galaxy correction was successful
	1 = Direct galaxy correction was not successful
9	0 = Reflected galaxy correction was successful
	1 = Reflected galaxy correction was not successful
10	0 = Atmosphere correction was successful
10	1 = Atmosphere correction was not successful
11	0 = Faraday rotation correction was successful
11	1 = Faraday rotation correction was not successful
10	0 = Observation was a valid value
12	1 = Observation was a null value
13	0 = Observation was within half orbit
	1 = Observation was outside half orbit
14	$0 = TA$ minus TA_FILTERED was less than a threshold
	1 = TA minus TA_FILTERED was greater than a threshold
15	0 = Observation was free of RFI
	1 = Observation was RFI contaminated

4.6.32 cell_tb_qual_flag_3_[fore | aft]

A 16-bit binary string of 1's and 0's indicating the quality of L1B_TB_E data used to derive the L1C_TB_E data. A '0' indicates the L1C_TB_E observations met a given quality criterion as described in L1B_TB_E's tb_qual_flag_3 data field; a '1' indicates that the same criterion was not met in L1C_TB_E. Bit position '0' refers to the least significant digit.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0
Valid_max:	65,536
Unit:	N\A

Bit Position	Bit Value and Interpretation
0	0 = Observation has acceptable quality
0	1 = Observation does not have acceptable quality
1	0 = Observation within physical range
1	1 = Observation beyond physical range
2	0 = RFI was not detected in the observation
Z	1 = RFI was detected in the observation
2	0 = RFI was detected and corrected in the observation
3	1 = RFI was detected but not correctable in the observation
4	0 = Observation had acceptable NEDT
4	1 = Observation did not have acceptable NEDT
5	0 = Direct sun correction was successful
	1 = Direct sun correction was not successful
6	0 = Reflected sun correction was successful

	1 = Reflected sun correction was not successful	
7	0 = Reflected moon correction was successful	
	1 = Reflected moon correction was not successful	
8	0 = Direct galaxy correction was successful	
	1 = Direct galaxy correction was not successful	
9	0 = Reflected galaxy correction was successful	
9	1 = Reflected galaxy correction was not successful	
10	0 = Atmosphere correction was successful	
10	1 = Atmosphere correction was not successful	
11	intentionally left undefined	
10	0 = Observation was a valid value	
12	1 = Observation was a null value	
12	0 = Observation was within half orbit	
13	1 = Observation was outside half orbit	
14	$0 = TA$ minus TA_FILTERED was less than a threshold	
	$1 = TA minus TA_FILTERED$ was greater than a threshold	
15	0 = Observation was free of RFI	
	1 = Observation was RFI contaminated	

4.6.33 cell_tb_qual_flag_4_[fore | aft]

A 16-bit binary string of 1's and 0's indicating the quality of L1B_TB_E data used to derive the L1C_TB_E data. A '0' indicates the L1C_TB_E observations met a given quality criterion as described in L1B_TB_E's tb_qual_flag_4 data field; a '1' indicates that the same criterion was not met in L1C_TB_E. Bit position '0' refers to the least significant digit.

Precision:	Uint16
Dimension:	N = Number of grid cells covered by the swath
Valid_min:	0
Valid_max:	65,536
Unit:	N\A

Bit Position	Bit Value and Interpretation
0	0 = Observation has acceptable quality
	1 = Observation does not have acceptable quality
1	0 = Observation within physical range
1	1 = Observation beyond physical range
2	0 = RFI was not detected in the observation
	1 = RFI was detected in the observation
3	0 = RFI was detected and corrected in the observation
	1 = RFI was detected but not correctable in the observation
4	0 = Observation had acceptable NEDT
	1 = Observation did not have acceptable NEDT

5	0 = Direct sun correction was successful
	1 = Direct sun correction was not successful
6	0 = Reflected sun correction was successful
	1 = Reflected sun correction was not successful
7	0 = Reflected moon correction was successful
/	1 = Reflected moon correction was not successful
8	0 = Direct galaxy correction was successful
0	1 = Direct galaxy correction was not successful
9	0 = Reflected galaxy correction was successful
9	1 = Reflected galaxy correction was not successful
10	0 = Atmosphere correction was successful
10	1 = Atmosphere correction was not successful
11	intentionally left undefined
12	0 = Observation was a valid value
	1 = Observation was a null value
12	0 = Observation was within half orbit
13	1 = Observation was outside half orbit
14	$0 = TA$ minus TA_FILTERED was less than a threshold
	$1 = TA$ minus TA_FILTERED was greater than a threshold
15	0 = Observation was free of RFI
15	1 = Observation was RFI contaminated

5 REFERENCES

5.1 Requirements

- SMAP Level 1 Mission Requirements and Success Criteria. (Appendix O to the Earth Systematic Missions Program Plan: Program-Level Requirements on the Soil Moisture Active Passive Project.). NASA Headquarters/Earth Science Division, Washington, DC.
- SMAP Level 2 Science Requirements. SMAP Project, JPL D-45955, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Science Algorithms and Validation Requirements. SMAP Project, JPL D-45993, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Mission System Requirements. SMAP Project, JPL D-45962, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 4 Science Data System Requirements. SMAP Project, JPL D-61680, Jet Propulsion Laboratory, Pasadena, CA.

5.2 Plans

- SMAP Science Data Management and Archive Plan. SMAP Project, JPL D-45973, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Science Data Calibration and Validation Plan. SMAP Project, JPL D-52544, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Applications Plan. SMAP Project, JPL D-53082, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Science Data System Operation Plan. SMAP Project, JPL D-80765, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Project Implementation Plan. SMAP Project, JPL D-45939, Jet Propulsion Laboratory, Pasadena, CA.

5.3 Algorithm Theoretical Basis Documents

- SMAP Algorithm Theoretical Basis Document: L1B and L1C Radar Products. SMAP Project, JPL D-53052, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L1B Radiometer Product. SMAP Project, GSFC-SMAP-006, NASA Goddard Space Flight Center, Greenbelt, MD.
- SMAP Algorithm Theoretical Basis Document: L1C Radiometer Product. SMAP Project, JPL D-53053, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L2 & L3 Radar Soil Moisture (Active) Products. SMAP Project, JPL D-66479, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L2 & L3 Radiometer Soil Moisture (Passive) Products. SMAP Project, JPL D-66480, Jet Propulsion Laboratory, Pasadena, CA.

- SMAP Algorithm Theoretical Basis Document: L2 & L3 Radar/Radiometer Soil Moisture (Active/Passive) Products. SMAP Project, JPL D-66481, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L3 Radar Freeze/Thaw (Active) Product. SMAP Project, JPL D-66482, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L4 Surface and Root-Zone Soil Moisture Product. SMAP Project, JPL D-66483, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L4 Carbon Product. SMAP Project, JPL D-66484, Jet Propulsion Laboratory, Pasadena, CA.

5.4 Product Specification Documents

- SMAP Level 1A Radar Product Specification Document. SMAP Project, JPL D-72543, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1B Radar (L1C_S0_LoRes) Product Specification Document. SMAP Project, JPL D-72544, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1A Radiometer Product Specification Document. SMAP Project, JPL D-72554, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1B Radiometer (L1B_TB) Product Specification Document. SMAP Project, JPL D-72552, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1C Radiometer (L1C_TB) Product Specification Document. SMAP Project, JPL D-72545, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2 Active Soil Moisture (L2_SM_A) Product Specification Document. SMAP Project, JPL D-72546, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2 Passive Soil Moisture (L2_SM_P) Product Specification Document. SMAP Project, JPL D-72547, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2 Active/Passive Soil Moisture (L2_SM_AP) Product Specification Document. SMAP Project, JPL D-72548, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Freeze-Thaw (L3_FT_A) Product Specification Document. SMAP Project, JPL D-72549, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Active Soil Moisture (L3_SM_A) Product Specification Document. SMAP Project, JPL D-72550, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Passive Soil Moisture (L3_SM_P) Product Specification Document. SMAP Project, JPL D-72551, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Active/Passive Soil Moisture (L3_SM_AP) Product Specification Document. SMAP Project, JPL D-72552, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 4 Carbon (L4_C) Product Specification Document. SMAP Project, University of Montana, Missoula, MT.
- SMAP Level 4 Soil Moisture (L4_SM) Product Specification Document. SMAP Project, Global Modeling and Assimilation Office, Goddard Space Flight Center, Greenbelt, MD.

5.5 Enhanced Products (December 2016)

 SMAP Level 1B_TB_E Product Specification Document, JPL D-56289, Jet Propulsion Laboratory, Pasadena, CA.

- SMAP Level 1C_TB_E Product Specification Document. SMAP Project, JPL D-56290, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2_SM_P_E Product Specification Document. SMAP Project, JPL D-56291, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3_SM_P_E Product Specification Document. SMAP Project, JPL D-56292, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Freeze-Thaw Passive Product Specification Document (L3_FT_P).
 SMAP Project, JPL D-56293, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Enhanced Freeze-Thaw Passive Product Specification Document (L3_FT_P_E). SMAP Project, JPL D-56294, Jet Propulsion Laboratory, Pasadena, CA.

5.6 Others

- Interface Control Document Between the Soil Moisture Active Passive (SMAP) Science Data System (SDS) and the Alaska Satellite Facility (ASF) and National Snow and Ice Data Center (NSIDC) Distributed Active Archive Centers (DAACs), Goddard Space Flight Center.
- SMAP Pointing, Positioning, Phasing and Coordinate Systems, Volume 0: Definitions and Principle Coordinate Systems. SMAP Project, JPL D-46018, Jet Propulsion Laboratory, Pasadena, CA.
- ISO 19115:2003(E) International Standard Geographic Information Metadata, May 1, 2003.
- ISO 19115-2:2009 International Standard Geographic Information Part 2:Extensions for imagery and gridded data, December 12, 2009.
- ISO 19139:2007 International Standard Geographic Information Metadata XML schema implementation, May 14 2009.
- Introduction to HDF5, The HDF Group. URL: http://www.hdfgroup.org/HDF5/doc/H5.intro.html
- HDF5: API Specification Reference Manual, The HDF Group. URL: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
- HDF5 User's Guide Release 1.8.9, The HDF Group. URL: http://hdfgroup.com/HDF5/doc/UG
- NetCDF Climate and Forecast (CF) Metadata Conventions, Version 1.6, December 5, 2011.
- EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets, Brodzik, M.J., et. al., National Snow and Ice Data Center, Cooperative Institute of Environmental Sciences, University of Colorado, ISPRS International Journal of Geo-Information, ISSN 2220-9964, DOI: 10.3390/igji1010032.

6 APPENDIX A: ACRONYMS AND ABBREVIATIONS

This is the standard Soil Moisture Active Passive (SMAP) Science Data System (SDS) list of acronyms and abbreviations. Not all of these acronyms and abbreviations appear in every SMAP SDS document.

ADT	Algorithm Development Team
AMSR	Advanced Microwave Scanning Radiometer
ANSI	American National Standards Institute
APF	Algorithm Parameter File
ARS	Agricultural Research Service
ASF	Alaska Satellite Facility
ATBD	Algorithm Theoretical Basis Document
ATLO	Assembly Test Launch and Operations
BFPQ	Block Floating Point Quantization
BIC	Beam Index Crossing
CARA	Criticality and Risk Assessment
CBE	Current Best Estimate
CCB	Configuration Control Board
CCSDS	Consultative Committee on Space Data Systems
CDR	Critical Design Review
CEOS	Committee on Earth Observing Systems
CF	Climate and Forecast (metadata convention)
СМ	Configuration Management
СМ	Center of Mass
CONUS	Continental United States
COTS	Commercial Off the Shelf
CR	Change Request
DAAC	Distributed Active Archive Center
DB	Database
DBA	Database Administrator
dB	Decibels
deg	Degrees
deg/sec	Degrees per second
deg C	Degrees Celsius
DEM	Digital Elevation Model
DFM	Design File Memorandum
DIU	Digital Interface Unit
DN	Data Number
DOORS	Dynamic Object Oriented Requirements
DQC	Data Quality Control
DSK	Digital Skin Kernel
DVD	Digital Versatile Disc
EASE	Equal Area Scalable Earth
ECMWF	European Centre for Medium Range Weather Forecasts
ECHO	EOS Clearing House

ECI	Earth Centered Inertial Coordinate System
ECR	Earth Centered Rotating Coordinate System
ECR	Engineering Change Request
ECS	EOSDIS Core System
EDOS	EOS Data Operations System
EM	Engineering Model
EOS	Earth Observing System
EOSDIS	Earth Observing System Data and Information System
EPO	Education and Public Outreach
ESDIS	Earth Science Data and Information System Project
ESDT	Earth Science Data Type
ESSP	Earth Science System Pathfinder
ET	Ephemeris Time
EU	Engineering Units
FOV	Field of View
FRB	Functional Requirements Baseline
FS	Flight System
FSW	Flight Software
F/T	Freeze/Thaw
FTP	File Transfer Protocol
Gbyte	Gigabyte
GDS	Ground Data System
GHA	Greenwich Hour Angle
GHz	Gigahertz
GLOSIM	Global Simulation
GMAO	Government Modeling and Assimilation Office
GMT	Greenwich Mean Time
GN	Ground Network
GPMC	Governing Program Management Council
GPP	
GPP GPS	Gross Primary Production
GPS	Gross Primary Production Global Positioning System
GPS GSE	Gross Primary Production Global Positioning System Ground Support Equipment
GPS GSE GSFC	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center
GPS GSE GSFC HDF	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format
GPS GSE GSFC HDF HK	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry)
GPS GSE GSFC HDF HK Hz	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz
GPS GSE GSFC HDF HK Hz HSD	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz Health and Status Data
GPS GSE GSFC HDF HK Hz HSD ICE	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz Health and Status Data Integrated Control Electronics
GPS GSE GSFC HDF HK Hz HSD ICE ICESat	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz Health and Status Data Integrated Control Electronics Ice, Cloud and Land Elevation Satellite
GPS GSE GSFC HDF HK Hz HSD ICE ICESat IDL	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz Health and Status Data Integrated Control Electronics Ice, Cloud and Land Elevation Satellite Interactive Data Language
GPS GSE GSFC HDF HK Hz HSD ICE ICESat IDL I&T	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz Health and Status Data Integrated Control Electronics Ice, Cloud and Land Elevation Satellite Interactive Data Language Integration and Test
GPS GSE GSFC HDF HK Hz HSD ICE ICESat IDL I&T ICD	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz Health and Status Data Integrated Control Electronics Ice, Cloud and Land Elevation Satellite Interactive Data Language Integration and Test Interface Control Document
GPS GSE GSFC HDF HK Hz HSD ICE ICESat IDL I&T ICD IEEE	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz Health and Status Data Integrated Control Electronics Ice, Cloud and Land Elevation Satellite Interactive Data Language Integration and Test Interface Control Document Institute of Electrical and Electronics Engineers
GPS GSE GSFC HDF HK Hz HSD ICE ICESat IDL I&T ICD IEEE IFOV	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz Health and Status Data Integrated Control Electronics Ice, Cloud and Land Elevation Satellite Interactive Data Language Integration and Test Interface Control Document Institute of Electrical and Electronics Engineers Instantaneous Field of View
GPS GSE GSFC HDF HK Hz HSD ICE ICESat IDL I&T ICD IEEE	Gross Primary Production Global Positioning System Ground Support Equipment Goddard Space Flight Center Hierarchical Data Format Housekeeping (telemetry) Hertz Health and Status Data Integrated Control Electronics Ice, Cloud and Land Elevation Satellite Interactive Data Language Integration and Test Interface Control Document Institute of Electrical and Electronics Engineers

R17 Extended Mission Release Aug 31, 20120	JPL D-56290 SMAP Enhanced Level 1C Radiometer Data Product Specification Document
IRU	Inertial Reference Unit
ISO	International Organization for Standardization
IV&V	Independent Verification and Validation
ITAR	International Traffic in Arms Regulations
I&T	Integration and Test
JPL	Jet Propulsion Laboratory
kHz	Kilohertz
km	Kilometers
LAN	Local Area Network
LBT	Loopback Trap
LEO	Low Earth Orbit
LEOP	Launch and Early Operations
LOE	Level Of Effort
LOM	Life Of Mission
LOS	Loss of Signal
LSK	Leap Seconds Kernel
LZPF	Level Zero Processing Facility
m	Meters
MHz	Megahertz
MIT	Massachusetts Institute of Technology
MMR	Monthly Management Review
MOA	Memorandum of Agreement
MOC	Mission Operations Center
MODIS	Moderate Resolution Imaging Spectroradiometer
MOS	Mission Operations System
m/s	Meters per second
ms	Milliseconds
MS	Mission System
NAIF	Navigation and Ancillary Information Facility
NASA	National Aeronautics and Space Administration
NCEP	National Centers for Environmental Protection
NCP	North Celestial Pole
NCSA	National Center for Supercomputing Applications
NEDT	Noise Equivalent Diode Temperature
NEE	Net Ecosystem Exchange
NEN	Near Earth Network
netCDF	Network Common Data Form
NFS	Network File System/Server
NISN	NASA Integrated Services Network
NRT	Near Real Time
NOAA	National Oceanic and Atmospheric Administration
NSIDC	National Snow and Ice Data Center
NVM	Non-Volatile Memory
NWP	Numerical Weather Prediction
N\A	Not applicable
0C0	Orbiting Carbon Observatory

ODDNUM	Orbit Number File
ORBNUM	Orbit Number File
OODT	Object Oriented Data Technology
ORR	Operational Readiness Review
ORT	Operational Readiness Test
OSSE	Observing System Simulation Experiment
OSTC	One Second Time Command
PALS	Passive and Active L-Band System
PALSAR	Phased Array L-Band Synthetic Aperture Radar
PcK	Planetary Constants Kernel
PDR	Preliminary Design Review
PPPCS	Pointing, Position, Phasing and Coordinate System
PR	Problem Report
PRF	Pulse Repetition Frequency
PRI	Pulse Repetition Interval
PROM	Programmable Read Only Memory
PSD	Product Specification Document
QA	Quality Assurance
rad	Radians
RAM	Random Access Memory
RBA	Reflector Boom Assembly
RBD	Rate Buffered Data
RBE	Radiometer Back End
RDD	Release Description Document
RDE	Radiometer Digital Electronics
RF	Radio Frequency
RFA	Request For Action
RFE	Radiometer Front End
RFI	Radio Frequency Interference
RMS	Root mean square
RSS	Root sum square
ROM	Read Only Memory
RPM	revolutions per minute
RVI	•
SA	Radar Vegetation Index System Administrator
SAR	-
	Synthetic Aperture Radar
S/C	Spacecraft
SCE	Spin Control Electronics
SCLK	Spacecraft Clock
SDP	Software Development Plan
SDS	Science Data System
SDT	Science Definition Team
SI	International System
SITP	System Integration and Test Plan
SMAP	Soil Moisture Active Passive
SMEX	Soil Moisture Experiment
SMOS	Soil Moisture and Ocean Salinity Mission

SMP	Software Management Plan
SNR	Signal to noise ratio
SOC	Soil Organic Carbon
SOM	Software Operators Manual
SQA	Software Quality Assurance
SPDM	Science Process and Data Management
SPG	Standards Process Group
SPK	Spacecraft Kernel
SQA	Software Quality Assurance
SPS	Science Production Software
SRF	Science Orbit Reference Frame
SRR	
	System Requirements Review
SRTM	Shuttle Radar Topography Mission
SSM/I	Special Sensor Microwave/Imager
STP	Software Test Plan
sec	Seconds
TAI	International Atomic Time
TB	Brightness Temperature
TBC	To Be Confirmed
TBD	To Be Determined
TBR	To Be Resolved
TCP/IP	Transmission Control Protocol/Internet Protocol
TEC	Total Electron Content
TM	Trademark
TOA	Time of Arrival
TPS	Third Party Software
UML	Unified Modeling Language
U-MT	University of Montana
USDA	United States Department of Agriculture
UTC	Coordinated Universal Time
V&V	Verification and Validation
VWC	Vegetation Water Content
-	0