ATL06 Product Data Dictionary Date Generated: 2021-07-27T12:33:24 | | | ITRF2014 reference frame), plus ancillary parameters that can be used to interpret and assess the quality of the height estimates. The data were acquired by th | |-----------------------------------|-------------|--| | level | (Attribute) | L3A | | short_name | (Attribute) | ATL06 | | title | (Attribute) | ATLAS/ICESat-2 L3A Land Ice Height | | Group: / | (Attribute) | This data set (ATL06) provides geolocated, land-ice surface heights (above the WGS 84 ellipsoid, ITRF2014 reference frame), plus ancillary parameters that can be used to interpret and assess the quality of the height estimates. The data were acquired by th | | Conventions | (Attribute) | CF-1.6 | | citation | (Attribute) | SET_BY_META | | contributor_name | (Attribute) | Thomas E Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (david.w.hancock@nasa.gov) | | contributor_role | (Attribute) | Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer | | creator_name | (Attribute) | SET_BY_META | | data_rate | (Attribute) | Data within this group pertain to the granule in its entirety. | | date_created | (Attribute) | SET_BY_PGE | | date_type | (Attribute) | итс | | featureType | (Attribute) | trajectory | | geospatial_lat_max | (Attribute) | 0.0 | | geospatial_lat_min | (Attribute) | 0.0 | | geospatial_lat_units | (Attribute) | degrees_north | | geospatial_lon_max | (Attribute) | 0.0 | | geospatial_lon_min | (Attribute) | 0.0 | | geospatial_lon_units | (Attribute) | degrees_east | | granule_type | (Attribute) | ATL06 | | hdfversion | (Attribute) | SET_BY_PGE | | history | (Attribute) | SET_BY_PGE | | identifier_file_uuid | (Attribute) | SET_BY_PGE | | identifier_product_doi | (Attribute) | 10.5067/ATLAS/ATL06.001 | | identifier_product_doi_authority | (Attribute) | http://dx.doi.org | | identifier_product_format_version | (Attribute) | SET_BY_PGE | | identifier_product_type | (Attribute) | ATL06 | | institution | (Attribute) | SET_BY_META | | instrument | (Attribute) | SET_BY_META | | keywords | (Attribute) | SET_BY_META | | keywords_vocabulary | (Attribute) | SET_BY_META | | license | (Attribute) | Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of the ICESat-2 Science Project Office at NASA/GSFC. | | naming_authority | (Attribute) | http://dx.doi.org | | platform | (Attribute) | SET_BY_META | | | | |--------------------------------|-----------------------------|---|--|--|--| | processing_level | (Attribute) | L3A | | | | | project | (Attribute) | SET_BY_META | | | | | publisher_email | (Attribute) | SET_BY_META | | | | | publisher_name | (Attribute) | SET_BY_META | | | | | publisher_url | (Attribute) | SET_BY_META | | | | | references | (Attribute) | SET_BY_META | | | | | source | (Attribute) | SET_BY_META | | | | | spatial_coverage_type | (Attribute) | Horizontal | | | | | standard_name_vocabulary | (Attribute) | CF-1.6 | | | | | summary | (Attribute) | SET_BY_META | | | | | time_coverage_duration | (Attribute) | SET_BY_PGE | | | | | time_coverage_end | (Attribute) | SET_BY_PGE | | | | | time_coverage_start | (Attribute) | SET_BY_PGE | | | | | time_type | (Attribute) | CCSDS UTC-A | | | | | Group: /ancillary_data | | Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants. | | | | | data_rate | (Attribute) | Data within this group pertain to the granule in its entirety. | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | atlas_sdp_gps_epoch
COMPACT | DOUBLE(1) | ATLAS Epoch Offset
None | seconds since 1980-
01-
06T00:00:00.0000000Z | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. (Source: Operations) | | | control
CONTIGUOUS | STRING(1) | Control File
None | 1 | PGE-specific control file used to generate this granule. To re-use, replace breaks (BR) with linefeeds. (Source: Operations) | | | data_end_utc
COMPACT | STRING(1) | End UTC Time of
Granule (CCSDS-A,
Actual)
None | 1 | UTC (in CCSDS-A format) of the last data point within the granule. (Source: Derived) | | | data_start_utc
COMPACT | STRING(1) | Start UTC Time of
Granule (CCSDS-A,
Actual)
None | 1 | UTC (in CCSDS-A format) of the first data point within the granule. (Source: Derived) | | | end_cycle
COMPACT | INTEGER(1) | Ending Cycle
None | 1 | The ending cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | | end_delta_time
COMPACT | DOUBLE(1) | ATLAS End Time (Actual) time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta | | | | | | | time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | |------------------------------|------------|--|---------------------------|---| | end_geoseg
COMPACT | INTEGER(1) | Ending Geolocation
Segment
None | 1 | The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | end_gpssow
COMPACT | DOUBLE(1) | Ending GPS SOW of
Granule (Actual)
None | seconds | GPS seconds-of-week of the last data point in the granule. (Source: Derived) | | end_gpsweek
COMPACT | INTEGER(1) | Ending GPSWeek of
Granule (Actual)
None | weeks from 1980-01-
06 | GPS week number of the last data point in the granule. (Source: Derived) | | end_orbit
COMPACT | INTEGER(1) | Ending Orbit Number
None | 1 | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | end_region
COMPACT | INTEGER(1) | Ending Region
None | 1 | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | end_rgt
COMPACT | INTEGER(1) | Ending Reference
Groundtrack
None | 1 | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | granule_end_utc
COMPACT | STRING(1) | End UTC Time of
Granule (CCSDS-A,
Requested)
None | 1 | Requested end time (in UTC CCSDS-A) of this granule. (Source: Derived) | | granule_start_utc
COMPACT | STRING(1) | Start UTC Time
of
Granule (CCSDS-A,
Requested)
None | 1 | Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived) | | qa_at_interval
COMPACT | DOUBLE(1) | QA Along-Track Interval
None | seconds/cell | Statistics time interval for along-track QA data. (Source: control) | | release
COMPACT | STRING(1) | Release Number
None | 1 | Release number of the granule. The release number is incremented when the software or | | | | | | ancillary data used to create the granule has been changed. (Source: Operations) | |-----------------------------|------------|--|------------------------------|---| | start_cycle
COMPACT | INTEGER(1) | Starting Cycle
None | 1 | The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | start_delta_time
COMPACT | DOUBLE(1) | ATLAS Start Time
(Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | start_geoseg
COMPACT | INTEGER(1) | Starting Geolocation
Segment
None | 1 | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | start_gpssow
COMPACT | DOUBLE(1) | Start GPS SOW of
Granule (Actual)
None | seconds | GPS seconds-of-week of the first data point in the granule. (Source: Derived) | | start_gpsweek
COMPACT | INTEGER(1) | Start GPSWeek of
Granule (Actual)
None | weeks from 1980-01-
06 | GPS week number of the first data point in the granule. (Source: Derived) | | start_orbit
COMPACT | INTEGER(1) | Starting Orbit Number
None | 1 | The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | start_region
COMPACT | INTEGER(1) | Starting Region
None | 1 | The starting product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | start_rgt
COMPACT | INTEGER(1) | Starting Reference
Groundtrack
None | 1 | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the | | | | | | spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | |---------------------------------|-----------------------------|--|---------|--| | version
COMPACT | STRING(1) | Version
None | 1 | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current release. (Source: Operations) | | Group: /ancillary_data/land_ice | | Contains land-ice-specific characteristics, instrument | | ne data product. This may include product rocessing constants. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | dt_hist
COMPACT | DOUBLE(1) | Histogram Bin Size
None | seconds | Bin size for histograms (sec)
(Source: Operations) | | fit_maxiter
COMPACT | INTEGER(1) | Maximum Iterations of Fit None | 1 | Maximum number of iterations in at_seg_fit (Source: Operations) | | fpb_maxiter
COMPACT | INTEGER(1) | Maximum Iterations for FPB None | 1 | Maximum number of iterations in fpb_corr (Source: Operations) | | max_res_ids
COMPACT | INTEGER(1) | Max Segments
None | 1 | Maximum number of segment ids in each residual_histogram (Source: Operations) | | min_dist
COMPACT | FLOAT(1) | Minimum Distance
None | meters | Min dist between first and last selected PEs (Source: Operations) | | min_gain_th
COMPACT | FLOAT(1) | Minimum Gain Threshold
None | 1 | Minimum estimated gain threshold (3.1.6) (Source: Operations) | | min_n_pe
COMPACT | INTEGER(1) | Minimum Photons
None | 1 | Minimum # PEs for fit (Source: Operations) | | min_n_sel
COMPACT | INTEGER(1) | Mininum Number of
Photons
None | 1 | Minimum number of selected PEs in pe_select (Source: Operations) | | min_signal_conf
COMPACT | INTEGER(1) | Minimum Signal
Confidence
None | 1 | Minimum signal confidence level for a photon to be considered valid. (Source: Operations) | | n_hist
COMPACT | INTEGER(1) | Number of Histogram
Bins
None | 1 | Number of bins in a histogram (Source: Operations) | | n_sigmas
COMPACT | FLOAT(1) | Number of Sigmas
None | 1 | Multiplied by sigma_expected to get h_win (Source: Operations) | | nhist_bins
COMPACT | INTEGER(1) | Number of Bins
None | 1 | Number of bins in residual histogram (Source: Operations) | | proc_interval
COMPACT | INTEGER(1) | Processing Interval
None | seconds | Processing interval in number of geolocation segments (Source: Operations) | | qs_lim_bsc
COMPACT | INTEGER(1) | Blowing Snow
Confidence QS Limit
None | 1 | atl06_quality_summary limit for testing Blowing Snow Confidence. (Source: Operations) | | qs_lim_hrs
COMPACT | FLOAT(1) | Height Robust Spread
QS Limit
None | meters | atl06_quality_summary limit for testing Height Robust Spread. (Source: Operations) | | qs_lim_hsigma
COMPACT | FLOAT(1) | Height Sigma QS Limit
None | 1 | atl06_quality_summary limit for testing Height Sigma. (Source: Operations) | | qs_lim_msw
COMPACT | INTEGER(1) | Multiple Scattering
Warning QS Limit | 1 | atl06_quality_summary limit for testing Multiple Scattering Warning. | | | | None | | (Source: Operations) | | | |----------------------------------|-----------------------------|--|------------------------------|--|--|--| | qs_lim_snr
COMPACT | FLOAT(1) | SNR Significance QS
Limit
None | 1 | atl06_quality_summary limit for testing SNR Significance. (Source: Operations) | | | | qs_lim_sss
COMPACT | INTEGER(1) | Signal Selection Source
QS Limit
None | 1 | atl06_quality_summary limit for testing Signal Selection Source. (Source: Operations) | | | | rbin_width
COMPACT | FLOAT(1) | Bin Size
None | meters | Residual histogram bin size (Source: Operations) | | | | sigma_beam
COMPACT | FLOAT(1) | Sigma of Gaussian
Footprint
None | meters | Spatial sigma of the Gaussian footprint (m) (Source: Operations) | | | | sigma_tx
COMPACT | FLOAT(6) | Sigma Tx
None | seconds | RDE of the Tx pulse in ATLAS Spot order (1-6). Calculated as half the difference between the 84th and 16th percentiles of the signal bins. (Source: Operations) | | | | t_dead
COMPACT | FLOAT(6) | Dead Time
None | seconds | Dead time, in ATLAS spot order (1-6). Calculated as the average
of the CAL42 per- channel dead times, using the appropriate channels for strong and weak spots. (Source: Operations) | | | | txp_maxiter
COMPACT | INTEGER(1) | Maximum Iterations
None | counts | Maximum number of iterations in tx_shape_corr (Source: Operations) | | | | Group: /gtx | | Contains subgroups organized by Ground Track (gt1l, gt1r, gt2l, gt2r, gt3l and gt3r) | | | | | | Group: /gtx/land_ice_segments | | The land_ice_height group contains the primary set of derived ATL06 products. This includes geolocation, height, and standard error and quality measures for each segment. This group is sparse, meaning that parameters are provided only for pairs of segments for which at least one beam has a valid surface-height measurement. | | | | | | data_rate | (Attribute) | Data within this group are where at least one beam h | | provided only for those ICESat-2 20m segments t measurement. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | atl06_quality_summary
CHUNKED | INTEGER_1(:) | ATL06_Quality_Summary
None | 1 | The ATL06_quality_summary parameter indicates the best-quality subset of all ATL06 data. A zero in this parameter implies that no data-quality tests have found a problem with the segment, a one implies that some potential problem has been found. Users who select only segments with zero values for this flag can be relatively certain of obtaining high-quality data, but will likely miss a significant fraction of usable data, particularly in cloudy, rough, or low-surface-reflectance conditions. (Source: section 4.3); (Meanings: [0 1]) (Values: ['best_quality', 'potential_problem']) | | | | delta_time
CHUNKED | DOUBLE(:) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: section 4.4) | | | | h_li
CHUNKED | FLOAT(:)
INVALID_R4B | Land Ice height
None | meters | Standard land-ice segment height determined by land ice algorithm, corrected for first-photon bias, representing the median- based height of the selected PEs | | | | | | | | (Source: section 4.4) | |---------------------------------|-----------------------------|--|---------------------------|---| | h_li_sigma
CHUNKED | FLOAT(:)
INVALID_R4B | Expected RMS segment misfit None | meters | Propagated error due to sampling error and FPB correction from the land ice algorithm (Source: section 4.4) | | latitude
CHUNKED | DOUBLE(:) | Latitude latitude | degrees_north | Latitude of segment center, WGS84, North=+, (Source: section 3.10) | | longitude
CHUNKED | DOUBLE(:) | Longitude
longitude | degrees_east | Longitude of segment center, , WGS84, East=+ (Source: section 3.10) | | segment_id
CHUNKED | INTEGER(:)
0 | Reference Point, m
None | 1 | Segment number, counting from the equator. Equal to the segment_id for the second of the two 20m ATL03 segments included in the 40m ATL06 segment (Source: section 3.1.2.1) | | sigma_geo_h
CHUNKED | FLOAT(:)
INVALID_R4B | Vertical Geolocation Error
None | meters | Total vertical geolocation error due to PPD and POD, including the effects of horizontal geolocation error on the segment vertical error. (Source: ATBD Section 3.10) | | Group: /gtx/land_ice_segments/b | oias_correction | The bias_correction group transmit-pulse-shape bias. | | out the estimated first-photon bias, and the | | data_rate | (Attribute) | Data within this group are | stored at the land_ice se | egment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | fpb_mean_corr
CHUNKED | FLOAT(:)
INVALID_R4B | first photon bias mean correction None | meters | Estimated first-photon bias (fpb) correction to mean segment height (Source: section 3.4.3.1) | | fpb_mean_corr_sigma
CHUNKED | FLOAT(:)
INVALID_R4B | fpb mean corr sigma
None | meters | Estimated error in fpb_mean_corr (Source: section 3.4.3.1) | | fpb_med_corr
CHUNKED | FLOAT(:)
INVALID_R4B | fpb median corr
None | meters | First-photon-bias correction giving the difference between the mean segment height and the corrected median height (Source: section 3.4.3.2) | | fpb_med_corr_sigma
CHUNKED | FLOAT(:)
INVALID_R4B | fpb median corr sigma
None | meters | Estimated error in fpb_med_corr (Source: section 3.4.3.2) | | fpb_n_corr
CHUNKED | FLOAT(:)
INVALID_R4B | fpb number photons corr
None | counts | Estimated window photon count after first-photon-bias correction (Source: section 4.3.3.3) | | med_r_fit
CHUNKED | FLOAT(:)
INVALID_R4B | mean median residual
None | meters | Difference between uncorrected mean and median of linear fit residuals (Source: section 3.3.5) | | tx_mean_corr
CHUNKED | FLOAT(:)
INVALID_R4B | tx shape mean correction
None | meters | Estimate of the difference between the mean of the full-waveform transmit-pulse and the mean of a broadened, truncated waveform consistent with the received pulse (Source: section 3.5) | | tx_med_corr
CHUNKED | FLOAT(:)
INVALID_R4B | tx shape median
correction
None | meters | Estimate of the difference between the median of the full-waveform transmit-pulse mean and the median of a broadened, truncated waveform consistent with the received pulse (Source: section 3.5) | | Group: /gtx/land_ice_segments/d | lem | Contains reference DEM a | nd geoid heights. | | | data_rate | (Attribute) | Data within this group are | stored at the land_ice se | egment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | dem_flag
CHUNKED | INTEGER_1(:) | DEM Source Flag
None | 1 | Indicates source of the DEM height. Values: 0=None, 1=Arctic, 2=Global, 3=MSS, 4=Antarctic. | | | | | | (Source: ATL03); (Meanings: [0 1 2 3 4]) (Values: ['none', 'arctic', 'global', 'mss', 'antarctic']) | |------------------------------------|-----------------------------|--|--------------------------|--| | dem_h
CHUNKED | FLOAT(:)
INVALID_R4B | DEM Height
None | meters | Height of the DEM, interpolated by cubic-spline interpolation in the DEM coordinate system to the PE location. (Best available DEM value in priority of Arctic/Antarctic/Global/MSS) (Source: ATL06 ATBD) | | geoid_free2mean
CHUNKED | FLOAT(:)
INVALID_R4B | Geoid Free-to-Mean
conversion
None | meters | Additive value to convert geoid heights from the tide-free system to the mean-tide system. (Add to geoid to get the geoid heights in the mean-tide system.) (Source: ATL03) | | geoid_h
CHUNKED | FLOAT(:)
INVALID_R4B | Geoid Height
None | meters | Geoid height above WGS-84 reference ellipsoid (range -107 to 86m) in the tide-free system. (Source: EGM2008) | | Group: /gtx/land_ice_segme | nts/fit_statistics | | | rameters that might indicate the quality of the fitted dimensions matching the land_ice_height group. | | data_rate | (Attribute) | Data within this group are | stored at the land_ice_h | neight segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | dh_fit_dx
CHUNKED | FLOAT(:)
INVALID_R4B | Along Track Slope
None | meters/meters | Along-track slope from along-track segment fit (Source: section 3.3.5.1) | | dh_fit_dx_sigma
CHUNKED | FLOAT(:)
INVALID_R4B | Sigma of Along Track
Slope
None | meters/meters | Propagated error in the along-track segment slope (Source: section 3.6.4) | | dh_fit_dy
CHUNKED | FLOAT(:)
INVALID_R4B | Across Track Slope
None | meters/meters | Across track slope from segment fits to weak and strong beam; the same slope is reported for both laser beams in each pair (Source: section 3.7) | | h_expected_rms
CHUNKED | FLOAT(:)
INVALID_R4B | Expected RMS misfit None | meters | Expected RMS misfit between PE heights and along-track segment fit (Source: section 3.6.3) | | h_mean
CHUNKED | FLOAT(:)
INVALID_R4B | Height Mean
None | meters | Mean surface height, not corrected for first-
photon bias or pulse truncation.
(Source: ATL06 ATBD) | | h_rms_misfit
CHUNKED | FLOAT(:)
INVALID_R4B | RMS Misfit
None | meters | RMS misfit between PE heights and along- track segment fit (Source: section 3.6.3) | | h_robust_sprd
CHUNKED | FLOAT(:)
INVALID_R4B | Robust Spread
None | meters | RDE of misfit between PE heights and the along-track segment fit. (Source: section 3.6.3) | | n_fit_photons
CHUNKED | INTEGER(:)
INVALID_I4B | Number of Photons in Fit
None | 1 | Number of PEs used in determining h_li, after editing (Source: section 3.3.5.2) | | n_seg_pulses
CHUNKED | FLOAT(:)
INVALID_R4B | Number potential segment pulses None | counts | The number of pulses potentially included in the segment (Source: section 3.3.3) | | sigma_h_mean
CHUNKED | FLOAT(:)
INVALID_R4B | Height Error
None | meters | Propagated height error due to PE-height sampling error for height from the along-track fit, not including geolocation-induced error (Source: section 3.6.4) | |
signal_selection_source
CHUNKED | INTEGER_1(:) | Signal Selection Source
None | 1 | Indicates the last algorithm attempted to select the signal for ATL06 fitting. 0=Signal selection succeeded using ATL03 detected PE; 1=Signal selection failed using ATL03 detected PE but succeeded using all flagged ATL03 PE; 2=Signal selection failed using all flagged ATL03 PE, but | | | | | | succeeded using the backup algorithm; 3=All signal-finding strategies failed. (Source: section 3.3.3); (Meanings: [0 1 2 3]) (Values: ['succeeded_using_pe', 'succeeded_using_flagged_pe', 'succeeded_using_backup', 'failed']) | |---|-----------------------------|--|--------------------------|---| | signal_selection_source_status
CHUNKED | INTEGER_1(:) | Signal Selection Source
Status
None | 1 | Indicates the status of the last signal selection algorithm attempted (see signal_selection_source). The definition of flag is different for each source and are defined in each of the signal_selection_status flags. (See Land Ice ATBD Table 3-2). (Source: section 3.3.3) | | snr
CHUNKED | FLOAT(:)
INVALID_R4B | SNR
None | 1 | Signal-to-noise ratio in the final refined window (Source: section 3.6.2) | | snr_significance
CHUNKED | FLOAT(:)
INVALID_R4B | SNR Significance
None | 1 | Probability that signal-finding routine would converge to at least the observed SNR for a random-noise input. Small values indicate a small likelihood of a surface-detection blunder. (Source: section 3.6.2) | | w_surface_window_final
CHUNKED | FLOAT(:)
INVALID_R4B | Surface Window Width
None | meters | Width of the surface window, top to bottom (Source: section 3.3.5.2) | | Group: /gtx/land_ice_segments/g | eophysical | The sun_and_clouds group indicative of the presence of | • | elated to solar background and parameters | | data_rate | (Attribute) | Data within this group are | stored at the land_ice_h | eight segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | bckgrd
CHUNKED | FLOAT(:)
INVALID_R4B | Background count rate
None | hz | Background count rate, derived from the ATL03 50-shot-average, interpolated to the segment center. (Source: section 3.6.1) | | bsnow_conf
CHUNKED | INTEGER_1(:)
INVALID_I1B | Blowing Snow confidence
None | 1 | Confidence flag for presence of blowing snow (Source: ATL09) | | bsnow_h
CHUNKED | FLOAT(:)
INVALID_R4B | Blowing Snow Layer Top
Height
None | meters | Blowing snow layer top height (Source: ATL09) | | bsnow_od
CHUNKED | FLOAT(:)
INVALID_R4B | Blowing snow OD
None | 1 | Optical thickness of blowing snow layer. (Source: ATL09) | | cloud_flg_asr
CHUNKED | INTEGER_1(:) INVALID_I1B | Cloud Flag ASR
None | 1 | Cloud flag (probability) from apparent surface reflectance. 0=clear with high confidence; 1=clear with medium confidence; 2=clear with low confidence; 3=cloudy with low confidence; 4=cloudy with medium confidence; 5=cloudy with high confidence (Source: ATL09); (Meanings: [0 1 2 3 4 5]) (Values: ['clear_with_high_confidence', 'clear_with_low_confidence', 'clear_with_low_confidence', 'cloudy_with_low_confidence', 'cloudy_with_medium_confidence', 'cloudy_with_high_confidence']) | | cloud_flg_atm
CHUNKED | INTEGER_1(:)
INVALID_I1B | Cloud Flag ATM
None | 1 | Number of layers found from the backscatter profile using the DDA layer finder. (Source: ATL09) | | dac
CHUNKED | FLOAT(:)
INVALID_R4B | Dynamic Atmosphere
Correction
None | meters | Dynamic Atmospheric Correction (DAC) includes inverted barometer (IB) effect. (Source: ATL03, 6.3.2) | | e_bckgrd
CHUNKED | FLOAT(:)
INVALID_R4B | Expected background count rate | hz | Expected background count rate based on sun angle, surface slope, for unit surface reflectance | | | | None | | (Source: section 3.6.1) | |---------------------------------|--------------------------|---|--------------|--| | layer_flag
CHUNKED | INTEGER_1(:) INVALID_I1B | Consolidated cloud flag
None | 1 | This flag is a combination of multiple flags (cloud_flag_atm, cloud_flag_asr, and bsnow_con) and takes daytime/nighttime into consideration. A value of 1 means clouds or blowing snow are likely present. A value of 0 indicates the likely absence of clouds or blowing snow. (Source: ATL09); (Meanings: [0 1]) (Values: ['likely_clear', 'likely_cloudy']) | | msw_flag
CHUNKED | INTEGER_1(:) INVALID_I1B | Multiple Scattering
Warning Flag
None | 1 | Multiple Scattering warning flag. The multiple scattering warning flag (ATL09 parameter msw_flag) has values from -1 to 5 where zero means no multiple scattering and 5 the greatest. If no layers were detected, then msw_flag = 0. If blowing snow is detected and its estimated optical depth is greater than or equal to 0.5, then msw_flag = 5. If the blowing snow optical depth is less than 0.5, then msw_flag = 4. If no blowing snow is detected but there are cloud or aerosol layers detected, the msw_flag assumes values of 1 to 3 based on the height of the bottom of the lowest layer: < 1 km, msw_flag = 3; 1-3 km, msw_flag = 2; > 3km, msw_flag = 1. A value of -1 indicates that the signal to noise of the data was too low to reliably ascertain the presence of cloud or blowing snow. We expect values of -1 to occur only during daylight. (Source: ATL09); (Meanings: [-1 0 1 2 3 4 5]) (Values: ['cannot_determine', 'no_layers', 'layer_gt_3km', 'layer_between_1_and_3_km', 'layer_gt_1km', 'blow_snow_od_lt_0.5', 'blow_snow_od_gt_0.5']) | | neutat_delay_total
CHUNKED | FLOAT(:)
INVALID_R4B | Total Neutral
Atmospheric Delay
None | meters | Total neutral atmosphere delay correction (wet+dry). (Source: ATL03a ATBD) | | r_eff
CHUNKED | FLOAT(:)
INVALID_R4B | Effective uncorrected reflectance None | 1 | Effective reflectance, uncorrected for atmospheric effects. (Source: section 3.1.5.4) | | solar_azimuth
CHUNKED | FLOAT(:)
INVALID_R4B | solar azimuth
None | degrees_east | The direction, eastwards from north, of the sun vector as seen by an observer at the laser ground spot. (Source: ATL03) | | solar_elevation
CHUNKED | FLOAT(:)
INVALID_R4B | solar elevation
None | degrees | Solar Angle above or below the plane tangent to the ellipsoid surface at the laser spot. Positive values mean the sun is above the horizon, while negative values mean it is below the horizon. The effect of atmospheric refraction is not included. This is a low-precision value, with approximately TBD degree accuracy. (Source: ATL03) | | tide_earth
CHUNKED | FLOAT(:)
INVALID_R4B | Earth Tide
None | meters | Solid earth tides in the tide-free system. (Source: ATL03 ATBD, Section 6.3.3) | | tide_earth_free2mean
CHUNKED | FLOAT(:)
INVALID_R4B | Earth Tide Free-to-Mean conversion None | meters | Additive value to convert solid earth tide from the tide-free system to the mean tide system. (Add to tide_earth to get solid earth tides in the meantide system.) (Source: ATL03) | | tide_equilibrium
CHUNKED | FLOAT(:)
INVALID_R4B | Equilibrium Tide
None | meters | Long period equilibrium tide self-consistent with the ocean tide model (+-0.04m). (Source: ATL03 ATBD, Section 6.3.1) | | tide_load
CHUNKED | FLOAT(:)
INVALID_R4B | Load Tide
None | meters | Load Tide - Local displacement due to Ocean Loading (-6 to 0 cm). | | | | | | (Source: ATL03 ATBD, Section 6.3.4) | |---------------------------------|-----------------------------|---|--------------------------|---| | tide_ocean
CHUNKED | FLOAT(:)
INVALID_R4B | Ocean Tide
None | meters | Ocean Tides including diurnal and semi-diurnal (harmonic analysis), and longer period tides (dynamic and self-consistent equilibrium). (Source: ATL03 ATBD, Section 6.3.1) | | tide_pole
CHUNKED | FLOAT(:)
INVALID_R4B | Solid Earth Pole Tide
None | meters | Solid Earth Pole Tide -Rotational deformation due to polar motion (-1.5 to 1.5 cm). (Source: ATL03 ATBD, Section 6.3.5) | | Group: /gtx/land_ice_segments/g | round_track | The ground_track group coas well as
angular information | • | ribing the GT and RGT for each land ice segment, | | data_rate | (Attribute) | Data within this group are | stored at the land_ice_h | eight segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | ref_azimuth
CHUNKED | FLOAT(:)
INVALID_R4B | Azimuth
None | radians | The direction, eastwards from north, of the laser beam vector as seen by an observer at the laser ground spot viewing toward the spacecraft (i.e., the vector from the ground to the spacecraft). (Source: ATL03g, Section 3.3) | | ref_coelv
CHUNKED | FLOAT(:)
INVALID_R4B | Co-elevation
None | radians | Coelevation (CE) is direction from vertical of the laser beam as seen by an observer located at the laser ground spot. (Source: ATL03g, Section 3.3) | | seg_azimuth
CHUNKED | FLOAT(:)
INVALID_R4B | Segment Azimuth
None | degrees | Azimuth of the pair-track, east of local north. (Source: section 3.1.2.2) | | sigma_geo_at
CHUNKED | FLOAT(:)
INVALID_R4B | Along Track Geolocation
Error
None | meters | Along-track component of the geolocation error. (Source: section 3.10) | | sigma_geo_r
CHUNKED | FLOAT(:)
INVALID_R4B | Radial Orbit Error
None | meters | Radial orbit component of the geolocation error. (Source: ATBD Section 3.10, (ATL03 sigma_h)) | | sigma_geo_xt
CHUNKED | FLOAT(:)
INVALID_R4B | Across Track Geolocation
Error
None | meters | Across-track component of the geolocation error. (Source: section 3.10) | | x_atc
CHUNKED | DOUBLE(:)
INVALID_R8B | X Along Track
None | meters | The along-track x-coordinate of the segment, measured parallel to the RGT, measured from the ascending node of the equatorial crossing of a given RGT. (Source: section 3.1.2.2) | | y_atc
CHUNKED | FLOAT(:)
INVALID_R4B | Y Along Track
None | meters | Along-track y coordinate of the segment, relative to the RGT, measured along the perpendicular to the RGT, positive to the right of the RGT. (Source: section 3.1.2.2) | | Group: /gtx/residual_histogram | | This group contains histog segment heights, at 200-m | | tween PE heights and the least-squares fit on. | | data_rate | (Attribute) | Data within this group are | stored at the 200-meter | along-track rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | bckgrd_per_m
CHUNKED | FLOAT(:) | Expected background
PEs
None | 1 | Number of background PE expected for each vertical meter of the histogram based on the observed background rate (bckgrd). (Source: Section 4.11) | | bin_top_h
CONTIGUOUS | FLOAT(748) | Bin Top Height
None | meters | Height of the top of each histogram bin, listed in increasing order. The bottom of each bin is equal to the top of the next- lowest bin. (Source: Section 4.11) | | count
CHUNKED | INTEGER(:,:)
INVALID_I4B | Bin Counts
None | counts | Residual count falling with each histogram bin. The top height of each histogram bin may be found in the bin_top_h dataset. | | | | | | (Source: Section 4.11) | | |-----------------------------|-----------------------------|--|------------------------------|---|--| | delta_time
CHUNKED | DOUBLE(:) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: section 4.4) | | | ds_segment_id
CONTIGUOUS | INTEGER_1(10) | Segment ID Index
None | 1 | Relative index of each segment_id used in the derivation of the histogram. (Source: Section 4.11) | | | lat_mean
CHUNKED | DOUBLE(:) | Latitude Mean
latitude | degrees_north | Mean latitude of the segments included in the histogram (Source: Section 4.11) | | | lon_mean
CHUNKED | DOUBLE(:) | Longitude Mean
longitude | degrees_east | Mean longitude of the segments included in the histogram (Source: Section 4.11) | | | pulse_count
CHUNKED | FLOAT(:) | Number of Histogram
Segment Pulses
None | counts | Number of pulses potentially included in the histogram (pulses are counted if they are in the central 20 m of each segment, even if no PE from the pulse are selected). (Source: Section 4.11) | | | segment_id_list
CHUNKED | INTEGER(:,:)
INVALID_I4B | Segment ID List
None | 1 | Segments ids included in each column of the histogram (Source: Section 4.11) | | | x_atc_mean
CHUNKED | DOUBLE(:) | Along Track Coordinate
Mean
None | 1 | Mean along-track coordinate of the segments included in the histogram. (Source: Section 4.11) | | | Group: /gtx/segment_quality | | The segment_quality group contains a dense record (i.e. for every possible segment in the granule) of the success or failure of the surface-finding strategies, and gives the locations of the reference points on the RPTs. For segments with adequate data quality (i.e. with more than 10 PE) it also contains offsets into the data structures for the other groups that allow each segment to be efficiently located within the file. | | | | | data_rate | (Attribute) | Data within this group are | stored at the ICESat-2 2 | 0m segment rate. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | delta_time
CHUNKED | DOUBLE(:) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: ATL03) | | | record_number
CHUNKED | INTEGER(:) | Land Ice Height Index
None | 1 | For those segments that have adequate signal strength, this parameter gives the record for the pair within the other groups in the granule. (Source: section 4.2) | | | reference_pt_lat
CHUNKED | DOUBLE(:) | Latitude
latitude | degrees_north | Latitude of the reference segment location on the RPT (Source: section 3.1.9) | | | reference_pt_lon
CHUNKED | DOUBLE(:) | Longitude
longitude | degrees_east | Longitude of the reference segment location on the RPT | | | | | | | (Source: section 3.1.9) | | |---|-----------------------------|--|---|---|--| | segment_id
CHUNKED | INTEGER(:) | Reference Point, m
None | 1 | Segment number corresponding to the second of two ATL03 segments in the ATL06 segment, counted from the RGT equator crossing (Source: section 3.1.2.1) | | | signal_selection_source
CHUNKED | INTEGER_1(:) | Signal Selection Source
None | 1 | Indicates the last algorithm attempted to select the signal for ATL06 fitting. 0=Signal selection succeeded using ATL03 detected PE; 1=Signal selection failed using ATL03 detected PE but succeeded using all flagged ATL03 PE; 2=Signal selection failed using all flagged ATL03 PE, but succeeded using the backup algorithm; 3=All signal-finding strategies failed. (Source: section 3.3.3); (Meanings: [0 1 2 3]) (Values: ['succeeded_using_pe', 'succeeded_using_flagged_pe', 'succeeded_using_backup', 'failed']) | | | Group: /gtx/segment_quality/signal_selection_status | | The signal selection status subgroup contains the success or failure for each surface-finding strategies | | | | | data_rate | (Attribute) | Data within this group are | Data within this group are stored at the ICESat-2 20m segment rate. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | signal_selection_status_all CHUNKED | INTEGER_1(:) | Signal Selection Status
Flag
None | 1 | Indicates confidence of the signal-selection algorithm using all ATL03-flagged PEs. 0=Signal
selection succeeded using all ATL03-flagged PEs (or algorithm not attempted); 1=Signal selection using all ATL03-flagged PEs failed the 20-meter-spread test; 2=Signal selection using all ATL03-flagged PEs failed the 10-photon-count test; 3=Signal selection using all ATL03-flagged PEs failed both tests (Source: section 3.3.3); (Meanings: [0 1 2 3]) (Values: ['succeeded', 'failed_20', 'failed_10', 'failed_both']) | | | signal_selection_status_backup CHUNKED | INTEGER_1(:) | Signal Selection Backup
Flag
None | 1 | Indicates confidence of the signal-selection algorithm using the backup signal finder. 0=Signal selection succeeded using the backup signal finder after centering the window on flagged PE (or backup signal finder not attempted); 1=Signal selection succeeded using the backup signal finder after searching for the strongest-signal window using four adjacent ATL03 segments; 2=Signal selection using the backup signal finder failed the 20-meter spread test; 3=Signal selection using the backup signal finder failed the 10-photon count test; 4=Signal selection using the backup signal finder failed both tests (Source: section 3.3.3); (Meanings: [0 1 2 3 4]) (Values: ['succeeded', 'failed_widen', 'failed_20', 'failed_10', 'failed_both']) | | | signal_selection_status_confident
CHUNKED | INTEGER_1(:) | Signal Selection
Confident Flag
None | 1 | Indicates confidence of the signal-selection algorithm using low or better PEs. 0=Signal selection succeeded using ATL03 low-or-better confidence PEs; 1=Signal selection using ATL03 low-or-better confidence PEs failed the 20-meter-spread test; 2=Signal selection using ATL03 low-or-better confidence PEs failed the 10-photon-count test; 3=Signal selection using ATL03 low-or-better confidence PEs failed both tests (Source: section 3.3.3); (Meanings: [0 1 2 3]) (Values: ['succeeded', 'failed_20', 'failed_10', 'failed_both']) | | | Group: /orbit_info | | Contains data that are common among all beams for the granule. These parameters are constants for a given granule. | | | | |--------------------------|-----------------------------|--|------------------------------|---|--| | data_rate | (Attribute) | These parameters are constant for a given granule. | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | crossing_time
CHUNKED | DOUBLE(:) | Ascending Node
Crossing Time
time | seconds since 2018-
01-01 | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | | cycle_number
CHUNKED | INTEGER_1(:) | Cycle Number
None | counts | Tracks the number of 91-day cycles in the mission, beginning with 01. A unique orbit number can be determined by subtracting 1 from the cycle_number, multiplying by 1387 and adding the rgt value. (Source: POD/PPD) | | | lan
CHUNKED | DOUBLE(:) | Ascending Node
Longitude
None | degrees_east | Longitude at the ascending node crossing. (Source: POD/PPD) | | | orbit_number
CHUNKED | UINT_2_LE(:) | Orbit Number
None | 1 | Unique identifying number for each planned ICESat-2 orbit. (Source: Operations) | | | rgt
CHUNKED | INTEGER_2(:) | Reference Ground track
None | counts | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT2L and GT2R. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: POD/PPD) | | | sc_orient
CHUNKED | INTEGER_1(:) | Spacecraft Orientation
None | 1 | This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. (Source: POD/PPD); (Meanings: [0 1 2]) (Values: ['backward', 'forward', 'transition']) | | | sc_orient_time CHUNKED | DOUBLE(:) | Time of Last Spacecraft
Orientation Change
time | seconds since 2018-
01-01 | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within | | | | | | | /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00:00000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | |---|-----------------------------|---|------------------------------|---|--| | Group: /quality_assessment | | Contains quality assessment data. This may include QA counters, QA along-track data and/or QA summary data. | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | qa_granule_fail_reason
COMPACT | INTEGER(1) | Granule Failure Reason
None | 1 | Flag indicating granule failure reason. 0=no failure; 1=processing error; 2=Insufficient output data was generated; 3=TBD Failure; 4=TBD_Failure; 5=other failure. (Source: Operations); (Meanings: [0 1 2 3 4 5]) (Values: ['no_failure', 'PROCESS_ERROR', 'INSUFFICIENT_OUTPUT', 'failure_3', 'failure_4', 'OTHER_FAILURE']) | | | qa_granule_pass_fail
COMPACT | INTEGER(1) | Granule Pass Flag
None | 1 | Flag indicating granule quality. 0=granule passes automatic QA. 1=granule fails automatic QA. (Source: Operations); (Meanings: [0 1]) (Values: ['PASS', 'FAIL']) | | | Group: /quality_assessment/gtx | | Contains quality assessment data. This may include QA counters, QA along-track data and/or QA summary data. | | | | | Label (Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | delta_time
CHUNKED | DOUBLE(:) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Mean number of GPS seconds since the ATLAS SDP epoch for the 10km segment. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: ATL03) | | | lat_mean
CHUNKED | DOUBLE(:) | Latitude Mean latitude | degrees_north | Mean latitude of the 10km segment.
(Source: Section 4.11) | | | lon_mean
CHUNKED | DOUBLE(:) | Longitude Mean longitude | degrees_east | Mean longitude of the 10km segment.
(Source: Section 4.11) | | | signal_selection_source_fraction_0
CHUNKED | FLOAT(:) | Signal Selection Source
Fraction 0
None | 1 | The fraction of 20m segments with signal_selection_source equal to zero. (Source: section 7.2) | | | signal_selection_source_fraction_1
CHUNKED | FLOAT(:) | Signal Selection Source
Fraction 1
None | 1 | The fraction of 20m segments with signal_selection_source equal to 1. (Source: section 7.2) | | | signal_selection_source_fraction_2
CHUNKED | FLOAT(:) | Signal Selection Source
Fraction 2
None | 1 | The fraction of 20m segments with signal_selection_source equal to 2. (Source: section 7.2) | | | signal_selection_source_fraction_3 CHUNKED | FLOAT(:) | Signal Selection Source
Fraction 3
None | 1 | The fraction of 20m segments with signal_selection_source equal to 3. (Source: section 7.2) | |