ATL03 Product Data Dictionary Date Generated: 2021-07-27T12:33:20 | description | (Attribute) | This data set (ATL03) contains height above the WGS 84 ellipsoid (ITRF2014 reference frame), | |-----------------------------------|-------------|--| | description | (Attribute) | latitude, longitude, and time for all photons downlinked by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). | | level | (Attribute) | L2 | | short_name | (Attribute) | ATL03 | | title | (Attribute) | SET_BY_META | | Group: / | | This data set (ATL03) contains height above the WGS 84 ellipsoid (ITRF2014 reference frame), latitude, longitude, and time for all photons downlinked by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). | | Conventions | (Attribute) | CF-1.6 | | citation | (Attribute) | Copied from ESDT MD_Constraints/useLimitation | | contributor_name | (Attribute) | Thomas E Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (david.w.hancock@nasa.gov) | | contributor_role | (Attribute) | Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer | | creator_name | (Attribute) | Copied from ESDT CI_ResponsibleParty/organisationName/originator | | date_created | (Attribute) | SET_BY_PGE | | date_type | (Attribute) | UTC | | featureType | (Attribute) | trajectory | | geospatial_lat_max | (Attribute) | 0.0 | | geospatial_lat_min | (Attribute) | 0.0 | | geospatial_lat_units | (Attribute) | degrees_north | | geospatial_lon_max | (Attribute) | 0.0 | | geospatial_lon_min | (Attribute) | 0.0 | | geospatial_lon_units | (Attribute) | degrees_east | | granule_type | (Attribute) | ATL03 | | hdfversion | (Attribute) | SET_BY_PGE | | history | (Attribute) | SET_BY_PGE | | identifier_file_uuid | (Attribute) | SET_BY_PGE | | identifier_product_doi | (Attribute) | Copied from ESDT MD_Identifier/code/Anchor | | identifier_product_doi_authority | (Attribute) | http://dx.doi.org | | identifier_product_format_version | (Attribute) | SET_BY_PGE | | identifier_product_type | (Attribute) | ATL03 | | institution | (Attribute) | Copied from ESDT CI_ResponsibleParty/organisationName | | instrument | (Attribute) | Copied from ESDT EOS_Instrument/citation/CI_Citation/title | | keywords | (Attribute) | Copied from ESDT MD_Keywords/keyword | | keywords_vocabulary | (Attribute) | Copied from ESDT MD_Keywords/thesaurusName/CI_Citation/title | | license | (Attribute) | Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of the ICESat-2 Science Project Office at NASA/GSFC. | | naming_authority | (Attribute) | http://dx.doi.org | | platform | (Attribute) | Copied from ESDT EOS_Platform/citation/CI_Citation/title | | processing_level | (Attribute) | Copied from ESDT processingLevel/MD_Identifier | | project | (Attribute) | Copied from ESDT MI_Operatio | n/citation/CI_Citation/title | 9 | | | |--------------------------------|-----------------------------|--|--|---|--|--| | publisher_email | (Attribute) | Copied from ESDT CI_Address/ | electronicMailAddress | | | | | publisher_name | (Attribute) | Copied from ESDT contact/CI_F | ResponsibleParty/organis | sationName | | | | publisher_url | (Attribute) | Copied from ESDT CI_OnlineRe | esource/linkage | | | | | references | (Attribute) | Copied from ESDT CI_OnlineRe | esource/linkage | | | | | source | (Attribute) | Copied from ESDT EOS_Platfor | m/description | | | | | spatial_coverage_type | (Attribute) | Horizontal | | | | | | standard_name_vocabulary | (Attribute) | CF-1.6 | | | | | | summary | (Attribute) | Copied from ESDT identification | Info/MD_DataIdentificati | on/purpose | | | | time_coverage_duration | (Attribute) | SET_BY_PGE | | | | | | time_coverage_end | (Attribute) | SET_BY_PGE | | | | | | time_coverage_start | (Attribute) | SET_BY_PGE | | | | | | time_type | (Attribute) | CCSDS UTC-A | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | ds_surf_type
COMPACT | INTEGER(5) | Surface Type Dimension Scale
None | 1 | Dimension scale indexing the surface type array. Index=1 corresponds to Land; index = 2 corresponds to Ocean; Index = 3 corresponds to Sealce; Index=4 corresponds to Landlce; Index=5 corresponds to InlandWater (Source: dim_scale); (Meanings: [1 2 3 4 5]) (Values: ['land', 'ocean', 'seaice', 'landice', 'inland_water']) | | | | ds_xyz
COMPACT | INTEGER(3) | XYZ Dimension Scale
None | 1 | Dimension scale indexing the XYZ components of velocity_sc. Index=1 corresponds to X; index = 2 corresponds to Y; Index = 3 corresponds to Z; (Source: dim_scale); (Meanings: [1 2 3]) (Values: ['x', 'y', 'z']) | | | | Group: /ancillary_data | | Contains information ancillary to instrument characteristics and/o | | nay include product characteristics, | | | | data_rate | (Attribute) | Data within this group pertain to | the granule in its entirety | у. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | atlas_sdp_gps_epoch
COMPACT | DOUBLE(1) | ATLAS Epoch Offset
None | seconds since 1980-
01-
06T00:00:00.0000000Z | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. (Source: Operations) | | | | control
CONTIGUOUS | STRING(1) | Control File
None | 1 | PGE-specific control file used to generate this granule. To re-use, replace breaks (BR) with linefeeds. (Source: Operations) | | | | data_end_utc
COMPACT | STRING(1) | End UTC Time of Granule
(CCSDS-A, Actual)
None | 1 | UTC (in CCSDS-A format) of the last data point within the granule. (Source: Derived) | | | | data_start_utc
COMPACT | STRING(1) | Start UTC Time of Granule
(CCSDS-A, Actual)
None | 1 | UTC (in CCSDS-A format) of the first data point within the granule. (Source: Derived) | | | | end_cycle
COMPACT | INTEGER(1) | Ending Cycle
None | 1 | The ending cycle number associated with the data contained within this | | | | end_delta_time
COMPACT | DOUBLE(1) | ATLAS End Time (Actual) time | seconds since 2018-
01-01 | granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | |---------------------------|------------|---|------------------------------|--| | end_geoseg
COMPACT | INTEGER(1) | Ending Geolocation Segment None | 1 | (Source: Derived) The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | end_gpssow
COMPACT | DOUBLE(1) | Ending GPS SOW of Granule (Actual)
None | seconds | GPS seconds-of-week of the last data point in the granule. (Source: Derived) | | end_gpsweek
COMPACT | INTEGER(1) | Ending GPSWeek of Granule
(Actual)
None | weeks from 1980-01-
06 | GPS week number of the last data point in the granule. (Source: Derived) | | end_orbit
COMPACT | INTEGER(1) | Ending Orbit
Number
None | 1 | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | end_region
COMPACT | INTEGER(1) | Ending Region
None | 1 | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | end_rgt
COMPACT | INTEGER(1) | Ending Reference Groundtrack
None | 1 | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | |------------------------------|------------|---|------------------------------|---| | granule_end_utc
COMPACT | STRING(1) | End UTC Time of Granule
(CCSDS-A, Requested)
None | 1 | Requested end time (in UTC CCSDS-A) of this granule.
(Source: Derived) | | granule_start_utc
COMPACT | STRING(1) | Start UTC Time of Granule
(CCSDS-A, Requested)
None | 1 | Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived) | | release
COMPACT | STRING(1) | Release Number
None | 1 | Release number of the granule. The release number is incremented when the software or ancillary data used to create the granule has been changed. (Source: Operations) | | start_cycle
COMPACT | INTEGER(1) | Starting Cycle
None | 1 | The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | start_delta_time COMPACT | DOUBLE(1) | ATLAS Start Time (Actual) time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | start_geoseg
COMPACT | INTEGER(1) | Starting Geolocation Segment None | 1 | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | start_gpssow | DOUBLE(1) | Start GPS SOW of Granule | seconds | GPS seconds-of-week of the first | | COMPACT | | (Actual)
None | | data point in the granule.
(Source: Derived) | |----------------------------------|-----------------------------|--|---------------------------|--| | start_gpsweek
COMPACT | INTEGER(1) | Start GPSWeek of Granule
(Actual)
None | weeks from 1980-01-
06 | GPS week number of the first data point in the granule. (Source: Derived) | | start_orbit
COMPACT | INTEGER(1) | Starting Orbit Number
None | 1 | The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | start_region
COMPACT | INTEGER(1) | Starting Region
None | 1 | The starting product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | start_rgt
COMPACT | INTEGER(1) | Starting Reference
Groundtrack
None | 1 | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | version
COMPACT | STRING(1) | Version
None | 1 | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current release. (Source: Operations) | | Group: /ancillary_data/altimetry | | Constants used in altimetry prod | cessing. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | atl03_pad
COMPACT | DOUBLE(1) | Padding for ATL03 processing None | seconds | Seconds of padding data needed for ATL03 processing. (Source: Control) | | band_tol
COMPACT | FLOAT(1) | Tolerance for band-to-DEM comparison None | meters | The tolerance, in meters, used to identify telemetry bands that do no intersect the DEM. (Source: Control) | | min_full_sat
COMPACT | INTEGER(2) | Min Full Saturation Photons
None | 1 | The minimum number of photons within a single transmit pulse that determines the pulse is fully saturated. (strong, weak) (Source: Control) | | min_near_sat
COMPACT | INTEGER(2) | Min Near Saturation Photons
None | 1 | The minimum number of photons within a single transmit pulse that determines the pulse is nearly saturated. (strong, weak) (Source: Control) | | min_sat_h
COMPACT | FLOAT(1) | Minimum saturation height None | meters | The height, in meters, used for determining a saturated transmit pulse. (Source: Control) | | min_scan_s
COMPACT | DOUBLE(1) | Minimum_Scan_time None | seconds | Minimum number of seconds in an alternate knobs setting that shall be considered an ocean or around-theworld scan. (Source: Control) | |--|-----------------------------|--|-----------------------|--| | ph_sat_flag
COMPACT | INTEGER_1(1) | Saturation identification flag
None | 1 | Indicates if identification of possibly saturated photons (using ph_quality) is enabled. (0=disabled, 1=enabled) (Source: Control); (Meanings: [0 1]) (Values: ['disabled', 'enabled']) | | ph_sat_lb
COMPACT | FLOAT(1) | Saturation identification lower bound None | meters | Lower bound of window used in saturation identification. (Source: Control) | | ph_sat_ub
COMPACT | FLOAT(1) | Saturation identification upper bound None | meters | Upper bound of window used in saturation identification. (Source: Control) | | podppd_pad
COMPACT | DOUBLE(1) | Padding for POD/PPD
Interpolation
None | seconds | Seconds of padding data needed for POD/PPD interpolation. (Source: Control) | | scan_settle_s
COMPACT | DOUBLE(2) | Scan_Settle_time
None | seconds | Number of seconds before and after a switch to an alternate knobs setting to allow for the spacecraft to settle. (Source: Control) | | Group: /ancillary_data/atlas_engineering | | This group contains statistics for | ATLAS engineering dat | a. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | det_ab_flag
COMPACT | INTEGER(1) | Detector Side, A or B
None | 1 | Indicates if the active detector (DET) is side A (1) or side B (2). (Source: Derived, L1B ATBD); (Meanings: [1 2]) (Values: ['a', 'b']) | | ds_gt
CONTIGUOUS | INTEGER_1(6) | GT Index
None | 1 | Dimension scale for ATLAS
Groundtracks (gt1l, gt1r, gt2l, gt2r,
gt3l, gt3r)
(Source: dim_scale);
(Meanings: [1 2
3 4 5 6]) (Values: ['gt1l', 'gt1r', 'gt2l',
'gt2r', 'gt3l', 'gt3r']) | | ds_stat
CONTIGUOUS | INTEGER_1(4) | Stat Index
None | 1 | Dimension scale for statistics in the order mean, sdev, min, max (Source: dim_scale); (Meanings: [1 2 3 4]) (Values: ['mean', 'sdev', 'min', 'max']) | | hvpc_ab_flag
COMPACT | INTEGER(1) | HVPC Side, A or B
None | 1 | Indicates if the active High Voltage
Power Converter (HVPC) is side A (1)
or side B (2).
(Source: Derived, L1B ATBD);
(Meanings: [1 2]) (Values: ['a', 'b']) | | laser_12_flag
COMPACT | INTEGER(1) | Laser 1 or Laser 2
None | 1 | Indicates if the active Laser is laser 1 or laser 2. (Source: Derived, L1B ATBD); (Meanings: [1 2]) (Values: ['1', '2']) | | Irs_ab_flag
COMPACT | INTEGER(1) | LRS Side A or B
None | 1 | Indicates if the active LRS is side A (1) or side B (2). (Source: Derived, L1B ATBD); (Meanings: [1 2]) (Values: ['a', 'b']) | | pdu_ab_flag
COMPACT | INTEGER(1) | PDU Side A or B
None | 1 | Indicates if the active PDU is side a (1) or side b (2). (Source: Derived, L1B ATBD); (Meanings: [1 2]) (Values: ['a', 'b']) | | ph_uncorrelated_error
COMPACT | FLOAT(6,1) | Uncorrelated Error
None | meters | The estimate of uncorrelated height error. This is a six-valued array mapped onto gt1l, gt1r, gt2l, gt2r, gt3l, gt3r using the sc_orient parameter. (Source: ATL03 ATBD, Section 7.7.2) | | spd_ab_flag
COMPACT | INTEGER(1) | SPD A or B
None | 1 | Indicates if the active Start Pulse Detector (SPD) is side a (1) or side b (2). (Source: Derived, L1B ATBD); (Meanings: [1 2]) (Values: ['a', 'b']) | | |---|-----------------------------|---|--|--|--| | tams_ab_flag
COMPACT | INTEGER(1) | TAMS Side A or B
None | 1 | Indicates if the active TAMS is side a (1) or side b (2). (Source: Derived, L1B ATBD); (Meanings: [1 2]) (Values: ['a', 'b']) | | | Group: /ancillary_data/atlas_engineer | ing/receiver | This group contains receiver par | rameters. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | rx_bckgrd_sensitivity COMPACT | FLOAT(6,4) | Receiver background sensivitiy None | events/joule | Per-beam receiver background sensitivity. This is a six-valued array mapped onto gt1l, gt1r, gt2l, gt2r, gt3l, gt3r using the sc_orient parameter. (Source: ATL02 ATBD, Sections 5.3.2) | | | rx_return_sensitivity COMPACT | FLOAT(6,4) | Receiver return sensitivity
None | events/joule | Per-beam receiver return sensitivity. This is a six-valued array mapped onto gt1l, gt1r, gt2l, gt2r, gt3l, gt3r using the sc_orient parameter. (Source: ATL02 ATBD, Sections 5.3.2) | | | Group: /ancillary_data/atlas_engineering/transmit | | This group contains transmit par | This group contains transmit parameters. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | tx_pulse_distribution
COMPACT | FLOAT(6,1) | transmit pulse energy
distribution
None | 1 | The fraction of the transmit pulse energy in a given beam, based on pre-launch calibration. This is a six-valued array mapped onto gt1l, gt1r, gt2l, gt2r, gt3l, gt3r using the sc_orient parameter. (Source: ATL03 ATBD, Section 7.2) | | | tx_pulse_energy
COMPACT | FLOAT(6,4) | ATLAS Transmit Energy
None | joules | The mean, standard deviation, minimum and maximum values of the transmit energy for each beam as reported by the start pulse detector, averaged over a given ATL03 granule. This is a 6x4 array mapped onto gt1l, gt1r, gt2l, gt2r, gt3l, gt3r using the sc_orient parameter. (Source: ATL03 ATBD Section 7.2.1) | | | tx_pulse_skew_est
COMPACT | FLOAT(1,4) | transmit pulse shape skew
None | seconds | The difference between the means of the lower and upper threshold crossing times; a positive value corresponds to a positive skew in the pulse, and conversely for a negative value. (Source: ATL02, described in ATL03 ATBD Section 7.2.1) | | | tx_pulse_thresh_lower
COMPACT | FLOAT(1,4) | transmit pulse lower threshold
None | volts | The lower threshold setting of the start pulse detector. The threshold crossing times are used to determine the start pulse time, and estimate the start pulse shape. If this setting changes during a given granule, this parameter becomes two-valued. (Source: ATL03 ATBD, Section 7.2) | | | tx_pulse_thresh_upper
COMPACT | FLOAT(1,4) | transmit pulse upper threshold
None | volts | The upper threshold setting of the start pulse detector. The threshold crossing times are used to determine the start pulse time, and estimate the start pulse shape. If this setting changes during a given granule, this | | | | | | | parameter becomes two-valued.
(Source: ATL03 ATBD, Section 7.2) | | | |--|---|--|---|--|--|--| | tx_pulse_width_lower
COMPACT | FLOAT(1,4) | lower threshold crossing time difference None | seconds | The difference between the two crossing times of the transmit pulse (Source: ATL02, described in ATL03 ATBD Section 7.2.1) | | | | tx_pulse_width_upper
COMPACT | FLOAT(1,4) | upper threshold crossing time
difference
None | seconds | The difference between the two crossing times of the transmit pulse (Source: ATL02, described in ATL03 ATBD Section 7.2.1) | | | | Group: /ancillary_data/calibrations | | This group contains calibrations derived from the ATLAS CAL products. | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | ds_channel
CONTIGUOUS | INTEGER_1(20) | Channel
None | 1 | Dimension scale for ATLAS PCE channels (1-16=strong, 17-20=weak) (Source: dim_scale) | | | | Group: /ancillary_data/calibrations/dead | time | | | S receiver channel accompanied by an toelectrons/spot/shot, channel-to- | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | cal42_product
COMPACT | STRING(1) | CAL Product Name
None | 1 | Name of ATLAS CAL Product containing the calibration data (Source: CAL42) | | | | side
COMPACT | INTEGER(1) | Detector Bank Side
None | 1 | A or B side of the detector bank
(Source: CAL42); (Meanings: [1 2])
(Values: ['A', 'B']) | | | | temperature
COMPACT | FLOAT(1) | Temperature
None | degreesC | Temperature for which calibrations are provided. (Source: CAL42) | | | | Group: /ancillary_data/calibrations/dead | Group: /ancillary_data/calibrations/dead_time/gtx | | CAL42 - Dead-time. Estimates dead time for each ATLAS receiver channel accompanied by an estimated standard deviation for that measurement. photoelectrons/spot/shot, channel-to-channel basis. | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | dead_time
COMPACT | DOUBLE(20) | DeadTime
None | seconds | Dead Time (per ATLAS PCE channel;
1-16=strong, 17-20=weak)
(Source: CAL42) | | | | sigma
COMPACT | DOUBLE(20) | Sigma
None | seconds | Sigma (per ATLAS PCE channel; 1-
16=strong, 17-20=weak)
(Source: CAL42) | | | | Group:
/ancillary_data/calibrations/dead_time_ra | adiometric_signal_loss | CAL34 - Dead-time Radiometric Signal Loss. Contains a table of radiometric corrections versu apparent return strength and width for several dead-time values. Correction is to be multiplied by raw return strength to get corrected return strength | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | cal34_product
CHUNKED | STRING(:) | CAL Product Name
None | 1 | Name of ATLAS CAL Products containing the calibration data (Source: CAL34) | | | | Group:
/ancillary_data/calibrations/dead_time_radiometric_signal_loss/gtx | | | eceived photoelectron po | measure of counting efficiency loss as opulations via combinations of return nel-to-channel basis. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | dead_time
CHUNKED | FLOAT(:) | Dead Time
None | ns | Dead time value
(Source: CAL34) | | | | rad_corr
CHUNKED | DOUBLE(:,;,:) | Radiometric Correction
None | 1 | Radiometric Correction (width, strength, deadtime) (Source: CAL34) | | | | strength | DOUBLE(:,:) | Beam Strength | 1 | Spot strength in events/shot | | | | CHUNKED | | None | | (strength, deadtime)
(Source: CAL34) | |---|-----------------------------|--|----------------------------|--| | width
CHUNKED | DOUBLE(:,:) | Apparent Width
None | ns | Apparent width (width,
deadtime) (Source: CAL34) | | Group: /ancillary_data/calibrations/first_p | hoton_bias | CAL19 -First Photon Bias. Provides a correction for first photon bias. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | cal19_product
CHUNKED | STRING(:) | CAL Product Name
None | 1 | Name of ATLAS CAL Products containing the calibration data (Source: CAL19) | | Group: /ancillary_data/calibrations/first_p | hoton_bias/gtx | CAL19 -First Photon Bias. Provi | des a correction for first | photon bias. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | dead_time
CHUNKED | FLOAT(:) | Dead Time
None | ns | Dead time value
(Source: CAL19) | | ffb_corr
CHUNKED | DOUBLE(:,:,:) | FFB Correction
None | ps | First Photon Bias Correction (width, strength, deadtime) in picoseconds. (Source: CAL19) | | strength
CHUNKED | DOUBLE(:,:) | Beam Strength
None | 1 | Spot strength in events/shot (strength, deadtime) (Source: CAL19) | | width
CHUNKED | DOUBLE(:,:) | Apparent Width
None | ns | Apparent width (width, deadtime) (Source: CAL19) | | Group: /ancillary_data/calibrations/low_link_impulse_response | | CAL20 - System low link impulse response. Calibrates receiver impulse response, including optical and electrically introduced reflections. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | bin_width
COMPACT | FLOAT(1) | Bin Width
None | seconds | Histogram bin width (Source: CAL20) | | cal20_product
COMPACT | STRING(1) | CAL Product Name
None | 1 | Name of ATLAS CAL Product containing the calibration data (Source: CAL20) | | hist_x
CONTIGUOUS | DOUBLE(2000) | Histogram Bin X Values
None | 1 | Histogram bin x-values (Source: CAL20) | | laser
COMPACT | INTEGER(1) | Laser
None | 1 | Laser Number
(Source: CAL20) | | mode
COMPACT | INTEGER(1) | Laser Power Setting
None | 1 | Laser Power Setting
(Source: CAL20) | | num_bins
COMPACT | INTEGER(1) | Number of Bins
None | 1 | Number of bins in the histogram (Source: CAL20) | | return_source
COMPACT | INTEGER(1) | Return Source
None | 1 | Source of the events from which the data are derived. (Source: CAL20); (Meanings: [0 1 2 3]) (Values: ['none', 'tep', 'maat', 'echo']) | | side
COMPACT | INTEGER(1) | A_or_B
None | 1 | A or B Side Component
(Source: CAL20); (Meanings: [1 2])
(Values: ['A', 'B']) | | temperature
COMPACT | FLOAT(1) | Temperature
None | degreesC | Temperature for which calibrations are provided. (Source: CAL20) | | Group: /ancillary_data/calibrations/low_lir | nk_impulse_response/gtx | CAL20 - System low link impulse optical and electrically introduce | • | eceiver impulse response, including | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | hist
CONTIGUOUS | DOUBLE(20,2000) | Histogram
None | 1 | Per-Channel Histogram
(Source: CAL20) | | total_events | INTEGER_8(20) | Total Events | 1 | Number of events used in | | COMPACT | | None | | constructing the per-channel histogram (Source: CAL20) | | | |-----------------------------------|-----------------------------|--|--|--|--|--| | Group: /ancillary_data/gtx | | Contains ancillary data used by Geolocated Photons ATBD. | Contains ancillary data used by the signal finding routine described in the ICESat-2 Global Geolocated Photons ATBD. | | | | | Group: /ancillary_data/gtx/signal | _find_input | Group contains the setup para | Group contains the setup parameters for the signal finding algorithm. | | | | | data_rate | (Attribute) | Parameters in this group are si | ngle-instances valid for | the entire file. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | addpad_flag
COMPACT | INTEGER(5) | Additional photon flag
None | 1 | Binary (logical) that if true (=1) then identify additional photon events as padding to achieve htspanin for each time interval sig_find_t_inc. (Source: ATL03, Section 5, Addpad) | | | | alpha_inc
COMPACT | DOUBLE(5) | Slope Increment
None | radians | Increment by which the slope is varied for slant histogramming over large gaps (Source: ATL03, Section 5, _inc) | | | | alpha_max
COMPACT | DOUBLE(5) | Maximum Slope
None | radians | Maximum slope allowed for slant histogram; if larger than this then don (Source: ATL03, Section 5, _max) | | | | delta_t_gap_min
COMPACT | DOUBLE(5) | Mimimum delta time gap
None | seconds | Minimum size of a time gap in the height profile over which to use variable slope slant histogramming. (Source: ATL03, Section 5, _time_gapmin) | | | | delta_t_lin_fit
COMPACT | DOUBLE(5) | Linear fit time increment
None | seconds | Time span over which to perform a running linear fit to identified signal photon events when editing outliers. Surface type dependent. (Source: ATL03, Section 5, _t_linfit_edit) | | | | delta_t_max
COMPACT | DOUBLE(5) | Histogram Maximum time
None | seconds | Maximum time interval over which photons are selected to histogram. Surface-type dependent. (Source: ATL03, Section 5, _tmax) | | | | delta_t_min
COMPACT | DOUBLE(5) | Histogram Minimum time
None | seconds | Minimum time interval over which photons are selected to histogram. Surface-type dependent. (Source: ATL03, Section 5, _tmin) | | | | delta_z_bg
COMPACT | DOUBLE(5) | Histogram height bin size for noise calculation from photon cloud None | seconds | Width of a height bin in each atmospheric histogram, Ha, if calculating Ha from the photon cloud. Surface-type dependent. (Source: ATL03, Section 5, _zBG) | | | | delta_zmax2
COMPACT | DOUBLE(5) | Maximum height bin size 2
None | meters | Maximum height bin size for histogramming for second sweep. Surface-type dependent. (Source: ATL03, Section 5, _zmax2) | | | | delta_zmin
COMPACT | DOUBLE(5) | Minimum height bin size
None | meters | Minimum height bin size for histogramming for first sweep. Surface-type dependent. (Source: ATL03, Section 5, _zmin) | | | | e_a
COMPACT | DOUBLE(5) | Multiplier of Ha_sigma
None | 1 | Multiplier of Ha_sigma used to determine which bins in the atmospheric histogram may contain signal photon events. Surface-type dependent. (Source: ATL03, Section 5, ea) | | | | e_linfit_edit
COMPACT | DOUBLE(5) | Multiplier of STD of linear fit
None | 1 | Multiplier of standard deviation of linear fit to signal photons used to edit out noise during running linear fit edit of outliers. (Source: ATL03, Section 5, | | | | | | | | e_linfit_edit) | |---------------------------|------------|--|---------|---| | e_linfit_slant
COMPACT | DOUBLE(5) | Multiplier of sigma linfit
None | 1 | Multiplier of sigma_linfit, the standard deviation of the residuals between the actual photon events used to estimate the surface using a linear fit; all photons with height > e_linfit_slant (Source: ATL03, Section 5, e_linfit_slant) | | e_m
COMPACT | DOUBLE(5) | Multiplier of STD of
background
None | 1 | Multiplier of standard deviation of the number of background photon events per bin used in determining signal photon threshold. Surface-type dependent. (Source: ATL03, Section 5, em) | | e_m_mult
COMPACT | DOUBLE(5) | Multiplier of STD of e_m
None | 1 | Multiplier of e_m used to determine Thsig2, threshold for singular bins. Surface-type dependent. (Source: ATL03, Section 5, em_mult) | | htspanmin
COMPACT | DOUBLE(5) | Minimum height span
None | meters | Minimum height span for each time interval of photons with confidence flag > 0. If the height span is < htspanmin then all photons not previously selected within +/- htspanmin/2 of the median height of the signal photons selected are marked with a confidence flag of 1. Surface-type dependent. (Source: ATL03, Section 5, Htspanmin) | | Islant_flag
COMPACT | INTEGER(5) | Flag to request slant histogramming for strong beams. None | 1 | Binary (logical) flag, if true (=1) then perform slant histogramming for the strong beam. Surface-type dependent. (Source: ATL03, Section 5, Islant); (Meanings: [0 1]) (Values: ['false', 'true']) | | min_fit_time_fact COMPACT | INTEGER(5) | minimum fit time factor
None | seconds | The factor to multiply DTIME by to obtain the minimum time over which to fit a line to a height profile to calculate the local slope using running linear fits, min_fit_time. (Source: ATL03, Section 5, min_fit_time_fact) | | n_delta_z1
COMPACT | INTEGER(5) | number of increments in z1
None | counts | The number of increments between delta_zmin and delat_zmax1. Surface-type dependent. (Source: ATL03, Section 5, n_z1) | | n_delta_z2
COMPACT | INTEGER(5) | number of increments in z2
None | counts | The number of increments between delta_zmax1 and delta_zmax2. Surface-type dependent. (Source: ATL03, Section 5, n_z2) | | nbin_min
COMPACT | INTEGER(5) | Minimum number of bins
None | counts | Minimum number of bins in a histogram required for the algorithm to be able to process the histogram. (Source: ATL03, Section 5, Nbinmin) | | nphot_min
COMPACT | INTEGER(5) | Minimum number of
photons to fill gap
None | counts | The minimum number of photons over which to perform a linear fit to estimate the surface profile across a gap. Surface-type dependent. (Source: ATL03, Section 5, Nphotmin) | | nslw
COMPACT | DOUBLE(5) | half height for slant
histogramming
None | meters | Half of the value of the height window used for slant histogramming relative to the surface defined by the linear fit to the surrounding photons at slope, alpha. Surface-type dependent. (Source: ATL03, Section 5, nslw) | | 1 | I | l . | I | 1 | |----------------------------|-----------------------------|---|-----------------------------|--| | nslw_v
COMPACT | DOUBLE(5) | Half height for variable slope
slant histogramming
None | meters | Half the value of the height window used for slant histogramming relative to the surface used when varying the surface slope, alpha, to fill large gaps. Surface-type dependent. (Source: ATL03, Section 5, nslw_v) | | out_edit_flag
COMPACT | INTEGER(5) | outlier edit flag
None | 1 | Binary (logical) flag, if true (=1) then perform an n _ edit on a running linear fit to identified signal to remove outliers. Surface-type dependent. (Source: ATL03, Section 5, Ledit); (Meanings: [0 1]) (Values: ['false', 'true']) | | pc_bckgrd_flag
COMPACT | INTEGER(5) | calculated background rate flag
None | 1 | Binary (logical) flag, if true (=1) then always use the photon cloud to calculate the background photon rate, if false only use the photon cloud in the absence of the atmospheric histogram. Surface-type dependent. (Source: ATL03, Section 5, Lpcbg); (Meanings: [0 1]) (Values: ['false', 'true']) | | r
COMPACT | DOUBLE(5) | Minimum ratio
None | 1 | Minimum ratio of max number of photons in histogram bin to mean noise value that must exist to consider a bin a signal bin. (Source: ATL03, Section 5, R) | | r2
COMPACT | DOUBLE(5) | Minimum ratio2
None | 1 | Minimum ratio of (maximum number of photons in any one bin of contiguous signal bins)/(Maximum number of photons in largest bin) in order to accept a group of potential signal bins as signal. Surface-type dependent. (Source: ATL03, Section 5, R2) | | sig_find_t_inc
COMPACT | DOUBLE(5) | Histogram time increment None | seconds | Time increment the algorithm uses to step through the photon cloud in a granule. Histograms are formed at each sig_find_t_inc interval to identify signal photon events. (Source: ATL03, Section 5, _time) | | snrlow
COMPACT | DOUBLE(5) | Signal to noise ratio low
None | 1 | Signal to noise ratio below which all selected signal has low confidence. (Source: ATL03, Section 5, snrlow) | | snrmed
COMPACT | DOUBLE(5) | Signal to noise ratio medium
None | 1 | Signal to noise ratio above which all selected signal has high confidence. Selected signal with signal to noise ratio between snrlow and snrmed is marked as medium confidence. (Source: ATL03, Section 5, snrmed) | | t_gap_big
COMPACT | DOUBLE(5) | Gap size criteria
None | seconds | For time gaps less than this value, slant histogramming is performed relative to the linear slope calculated from the surrounding signal. For time gaps greater than or equal to this value the slope is varied when performing slant histogramming. Surface-type dependent. (Source: ATL03, Section 5, tgapbig) | | Group: /ancillary_data/tep | | Contains information ancillary to instrument characteristics and/or | | nay include product characteristics, | | data_rate | (Attribute) | Data within this group pertain to | the granule in its entirety | y. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | ds_gt
CONTIGUOUS | INTEGER_1(6) | GT Index
None | 1 | Dimension scale for ATLAS
Groundtracks (gt1l, gt1r, gt2l, gt2r, | | | | | | gt3l, gt3r)
(Source: dim_scale); (Meanings: [1 2
3 4 5 6]) (Values: ['gt1l', 'gt1r', 'gt2l',
'gt2r', 'gt3l', 'gt3r']) | |--|--------------|--|---------|--| | min_tep_ph
COMPACT | INTEGER(1) | Minimum TEP photons
None | seconds | Minimum number of TEP photons required for computing a TEP histogram. (Source: Derived) | | min_tep_secs
COMPACT | DOUBLE(1) | Minimum TEP Seconds
None | seconds | Minimum seconds of data required for computing a TEP histogram. (Source: Derived) | | n_tep_bins
COMPACT | INTEGER(1) | Number of Bins
None | counts | Number of bins in each TEP histogram (Source: Derived) | | tep_bin_size
COMPACT | FLOAT(1) | TEP Bin Size
None | seconds | Size of each TEP histogram bin. (Source: Derived) | | tep_gap_size
COMPACT | DOUBLE(1) | TEP Gap Size
None | seconds | Minimum number of seconds separating each TEP histogram instance. (Source: Derived) | | tep_normalize
COMPACT | INTEGER(1) | Normalization Enabled
None | 1 | Indicates if the TEP histogram was normalized. 0=not normalized; 1=normalized (Source: Ops); (Meanings: [0 1]) (Values: ['not_normalized', 'normalized']) | | tep_peak_bins
COMPACT | INTEGER(1) | Number of Peak Bins to
Remove
None | counts | Number of peak bins to remove for TEP background computation. (Source: Derived) | | tep_prim_window
COMPACT | FLOAT(2) | TEP Primary Window
None | seconds | The range of the primary TEP window. Bins within this range are used in computing TEP rate. (Source: Derived) | | tep_range_prim
COMPACT | FLOAT(2) | Range of Primary TEP Window
None | seconds | The range of time of flight of TEP photon events to include in generating a histogram or other analaysis of the primary TEP return (Source: ATL03 ATBD) | | tep_rm_noise
COMPACT | INTEGER(1) | Noise Removal Enabled
None | 1 | Indicates if noise was removed from
the TEP histogram. 0=background
noise not removed; 1=background
noise removed
(Source: Ops); (Meanings: [0 1])
(Values: ['noise_not_removed',
'noise_removed']) | | tep_sec_window
COMPACT | FLOAT(2) | TEP Secondary Window
None | seconds | The range of the secondary TEP window. Bins within this range are used in computing TEP rate. (Source: Derived) | | tep_start_x
COMPACT | FLOAT(1) | TEP Start X
None | seconds | Value at the left edge of the first histogram bin. (Source: Derived) | | tep_valid_spot
COMPACT | INTEGER_1(6) | Index of TEP Spot
None | 1 | A 6x1 array indicating which TEP to use for each spot that does not have a TEP associated with it (e.g. which TEP to use to characterize spots 2, 4, 5, and 6). (Source: ATL03 ATBD); (Meanings: [1 2]) (Values: ['pce1_spot1', 'pce2_spot3']) | | Group: /atlas_impulse_response | | Contains parameters to characterize the ATLAS pulse energy and pulse shape, derived from the Start Pulse Detector data. These parameters are at the ICESat-2 geolocation segment rate (~20m along-track) | | | | Group: /atlas_impulse_response/pcex_sp | otx | Contains parameters to characterize the ATLAS impulse response from the TEP photon | | | | | | histograms available for two of t | the three strong beams. | | |---------------------------------------|-----------------------------|---|------------------------------|--| | Group: /atlas_impulse_response/pcex_s | potx/tep_histogram | Subgroup that contains the time of the histogram centers and the normalized histogram counts for each bin. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | reference_tep_flag
COMPACT | INTEGER(1) | Reference TEP Used
None | 1 | Flag that indicates the reference TEP has been used in place of a more recent TEP realization. 0=dynamic TEP used; 1=static reference TEP used. (Source: ATL03 ATBD, Section 7.2); (Meanings: [0 1]) (Values: ['dynamic_tep_used,', 'reference_tep_used']) | | tep_bckgrd
CHUNKED | INTEGER(:) | TEP Background
None | counts | The average number of counts in the TEP histogram bins, after excluding bins that likely contain the transmit pulse. (Source: ATL02 ATBD, Section 7.2) | | tep_duration CHUNKED | DOUBLE(:) | TEP Duration
None | seconds | The duration (or width) of data in the TEP histogram. Will generally be greater than 10 seconds. (Source: ATL02 ATBD, Section
7.2) | | tep_hist
CHUNKED | DOUBLE(:) | TEP Histogram
None | counts | The normalized number of counts in each bin of the TEP histogram. (Source: ATL02 ATBD, Section 7.2) | | tep_hist_sum
CHUNKED | INTEGER_8(:) | TEP Histogram Sum
None | counts | The total number of counts in the TEP histogram, after removing the background. (Source: ATL02 ATBD, Section 7.2) | | tep_hist_time
CHUNKED | DOUBLE(:) | TEP Histogram Time
None | seconds | The times associated with the TEP histogram bin centers, measured from the laser transmit time. (Source: ATL02 ATBD, Section 7.2) | | tep_tod
CHUNKED | DOUBLE(:) | TEP Time Of Day time | seconds since 2018-
01-01 | The time of day at of the start of the data within the TEP histogram, in seconds since the ATLAS SDP GPS Epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: ATL02 ATBD, Section 7.2) | | Group: /gtx | | Each group contains the segments for one Ground Track. As ICESat-2 orbits the earth, sequential transmit pulses illuminate six ground tracks on the surface of the earth. The track width is approximately 14m. Each ground track is numbered, according to the laser spot number that generates a given ground track. Ground tracks are numbered from the left to the right in the direction of spacecraft travel as: 1L, 1R in the left-most pair of beams; 2L, 2R for the center pair of beams; and 3L, 3R for the right-most pair of beams. | | | | Group: /gtx/bckgrd_atlas | | Contains data related to the 50- | shot background count, i | ncluding telemetry and range windows. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | bckgrd_counts
CHUNKED | INTEGER(:) | ATLAS 50-shot background count None | counts | Onboard 50 shot background (200 Hz) sum of photon events within the altimetric range window. (Source: ATL03 ATBD Section 7.3) | | bckgrd_counts_reduced | INTEGER(:) | ATLAS 50-shot background | counts | Number of photon counts in the 50- | | CHUNKED | | count - reduced
None | | shot sum after subtracting the number of signal photon events, defined as in ATBD Section 5, in that span. (Source: ATL03 ATBD Section 7.3) | |--------------------------------------|--------------|---|------------------------------|---| | bckgrd_hist_top
CHUNKED | FLOAT(:) | Top of the altimetric range window None | meters | The height of the top of the altimetric histogram, in meters above the WGS-84 ellipsoid, with all geophysical corrections applied. Parameter is ingested at 50-Hz, and values are repeated to form a 200-Hz array. (Source: ATL03 ATBD Section 7.3) | | bckgrd_int_height
CHUNKED | FLOAT(:) | Altimetric range window width None | meters | The height of the altimetric range window. This is the height over which the 50-shot sum is generated. Parameter is ingested at 50-Hz, and values are repeated to form a 200-Hz array. (Source: ATL03 ATBD Section 7.3) | | bckgrd_int_height_reduced
CHUNKED | FLOAT(:) | Altimetric range window height - reduced None | meters | The height of the altimetric range window after subtracting the height span of the signal photon events in the 50-shot span. (Source: ATL03 ATBD Section 7.3) | | bckgrd_rate
CHUNKED | FLOAT(:) | Background count rate based on the ATLAS 50-shot sum None | counts / second | The background count rate from the 50-shot altimetric histogram after removing the number of likely signal photons based on Section 5. (Source: ATL03 ATBD Section 7.3) | | delta_time
CHUNKED | DOUBLE(:) | Time at the start of ATLAS 50-shot sum time | seconds since 2018-
01-01 | Elapsed GPS Seconds from the ATLAS SDP GPS Epoch, referenced to the start of the 50-shot sum. This is based on every fiftieth laser fire time, which leads to a very close alignment with major frame boundaries (+/- 1 shot). The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: ATL02) | | pce_mframe_cnt CHUNKED | INTEGER_8(:) | PCE Major frame counter
None | counts | Major Frame ID - The major frame ID is read from the DFC and starts counting at DFC POR. The counter is used to identify individual major frames across diag and science packets. This counter can go for about 2.7 years before rolling over. It is in the first time tag science packet. Used as part of the photon ID and the safest way to align data within different APIDs or at different rates. (Source: ATL02) | | tlm_height_band1
CHUNKED | FLOAT(:) | Height of the telemetry band 1
None | meters | The height in meters of the telemetry band 1. (Source: ATL03 ATBD, Section 7.3.2) | | tlm_height_band2
CHUNKED | FLOAT(:) | Height of the telemetry band 2
None | meters | The height in meters of the telemetry band 2. (if 0, second band is not present). (Source: ATL03 ATBD, Section 7.3.2) | | | I | I . | I | 1 | | tlm_top_band1
CHUNKED | FLOAT(:) | Ellipsoidal height of the top of
the telemetry band 1.
None | meters | The ellipsoidal heights with respect to WGS-84 of the top of the telemetry band 1, with all geophysical corrections applied. (Source: ATL03 ATBD, Section 3.2, 7.3.2) | | | | |------------------------------------|-----------------------------|--|--|---|--|--|--| | tlm_top_band2
CHUNKED | FLOAT(:) | Ellipsoidal height of the top of
the telemetry band 2.
None | meters | The ellipsoidal heights with respect to WGS-84 of the top of the telemetry band 2, with all geophysical corrections applied. (Source: ATL03 ATBD, Section 3.2, 7.3.2) | | | | | Group: /gtx/geolocation | · | corresponding to the ICESat-2 (
along-track). In the case of no p
parameters are filled with invalid | Contains parameters related to geolocation. The rate of all of these parameters is at the rate corresponding to the ICESat-2 Geolocation Along Track Segment interval (nominally 20 m along-track). In the case of no photons within the segment (segment_ph_cnt=0), most parameters are filled with invalid or best-estimate values. Maintaining geolocation segments with no photons allows for the geolocation segment arrays to be directly aligned across the gtx groups. | | | | | | data_rate | (Attribute) | Data within this group are stored | d at the ICESat-2 20m s | egment rate. | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | | altitude_sc
CHUNKED | DOUBLE(:)
INVALID_R8B | Altitude
None | meters | Height of the spacecraft above the WGS84 ellipsoid. (Source: ATL03g ATBD, Section 3.4) | | | | | bounce_time_offset
CHUNKED | FLOAT(:)
INVALID_R4B | ground bounce time offset
None | seconds | The difference between the transmit time and the ground bounce time of the reference photons. (Source: ATL03 ATBD, Section 3.3) | | | | | delta_time
CHUNKED | DOUBLE(:) | Delta Time time | seconds since 2018-
01-01 | Transmit time of the reference photon, measured in seconds from the atlas_sdp_gps_epoch. If there is no reference photon, this time corresponds to the approximate midpoint time associated with the along-track geolocation segment edge. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | | | | full_sat_fract
CHUNKED | FLOAT(:)
INVALID_R4B | Full Saturation Fraction
None | 1 |
The fraction of pulses within the segment determined to be fully saturated. (Source: ATL03 ATBD) | | | | | near_sat_fract
CHUNKED | FLOAT(:)
INVALID_R4B | Near Saturation Fraction
None | 1 | The fraction of pulses within the segment determined to be nearly saturated. (Source: ATL03 ATBD) | | | | | neutat_delay_derivative
CHUNKED | FLOAT(:)
INVALID_R4B | (Neutral Atmosphere delay)/dh
None | meters/meters | Change in neutral atmospheric delay per height change (Source: ATL03a ATBD) | | | | | neutat_delay_total
CHUNKED | FLOAT(:)
INVALID_R4B | Total Neutral Atmospheric
Delay
None | meters | Total neutral atmosphere delay correction (wet+dry). (Source: ATL03a ATBD) | | | | | neutat_ht
CHUNKED | FLOAT(:)
INVALID_R4B | Neutral atmosphere ref height
None | meters | Reference height of the neutral atmosphere range correction (Source: ATL03a ATBD) | | | | | | | ĺ | | | | | | | ph_index_beg
CHUNKED | INTEGER_8(:)
0 | Photon Index Begin
None | counts | Index (1-based) within the photon-
rate data of the first photon within this
segment. Use in conjunction with
segment_ph_cnt.
(Source: Derived) | |-----------------------------------|-------------------------|--------------------------------|---------|---| | pitch
CHUNKED | FLOAT(:) INVALID_R4B | Pitch
None | degrees | Spacecraft pitch, roll, and yaw angles, are computed using 3, 2, 1 Euler angle sequence, posted at the geolocation segment rate, and the units are degrees. Angles represent the deviation from a coordinate system whose z-axis is perpendicular to the reference ellipsoid of the Earth (pointing nadir), y-axis is perpendicular to the orbit plane, and x-axis completes the triad in the direction of spacecraft velocity. Note: yaw angle is near 0deg when ICESat-2 is flying forward (positive beta angle), near 180deg when ICESat-2 is flying backward (negative beta angle). (Source: ANCO4) | | podppd_flag
CHUNKED | INTEGER_1(:) 0 | POD_PPD Flag None | 1 | Composite POD/PPD flag that indicates the quality of input geolocation products for the specific ATL03 segment. A non-zero value may indicate that geolocation solutions are degraded or that ATLAS is within a calibration scan period (CAL). The ATL03 sigma values should indicate the degree of uncertainty associated with the degradation. Possible non-CAL values are: 0=NOMINAL; 1=POD_DEGRADE; 2=PPD_DEGRADE; 3=PODPPD_DEGRADE; 3=PODPPD_DEGRADE; 6=CAL_POD_DEGRADE; 6=CAL_POD_DEGRADE; 7=CAL_POD_DEGRADE; (Source: ATL02, ANC04, ANC05); (Meanings: [0 1 2 3 4 5 6 7]) (Values: ['nominal', 'pod_degrade', 'cal_nominal', 'cal_pod_degrade', 'cal_ppd_degrade', 'cal_podpd_degrade']) | | range_bias_corr
CHUNKED | FLOAT(:)
INVALID_R4B | range bias correction
None | meters | The range_bias estimated from geolocation analysis. (Source: ATL03G ATBD, Section 3.6) | | ref_azimuth
CHUNKED | FLOAT(:)
INVALID_R4B | Azimuth azimuth | radians | Azimuth of the unit pointing vector for the reference photon in the local ENU frame in radians. The angle is measured from North and positive towards East. (Source: ATL03G ATBD, Section 3.3) | | ref_elev
CHUNKED | FLOAT(:)
INVALID_R4B | elevation
elevation | radians | Elevation of the unit pointing vector for the reference photon in the local ENU frame in radians. The angle is measured from East-North plane and positive towards Up (Source: ATL03G ATBD, Section 3.3) | | reference_photon_index
CHUNKED | INTEGER(:)
0 | Reference Photon Index
None | counts | Index of the reference photon within the set of photons grouped within in segment. To recover the position of the reference photon within the photon-rate arrays, add ref_ph_ndx to the corresponding ph_ndx_beg and | | | | | | subtract 1. If no reference photon was selected, this value will indicate that the reference photon defaulted to the first photon. In the case of no photons within the segment (segment_ph_cnt=0), the value should be 0. (Source: ATL03 ATBD, Section 3.2) | |---------------------------------|----------------------|---|---------------|---| | reference_photon_lat CHUNKED | DOUBLE(:) | Segment Latitude latitude | degrees_north | Latitude of each reference photon. Computed from the ECF Cartesian coordinates of the bounce point. In the case of no photons within the segment (segment_ph_cnt=0), the coordinates are the midpoint of the geolocation segment on the reference ground track. (Source: ATL03G ATBD, Section 3.4) | | reference_photon_lon
CHUNKED | DOUBLE(:) | Segment Longitude
longitude | degrees_east | Longitude of each reference photon. Computed from the ECF Cartesian coordinates of the bounce point. In the case of no photons within the segment (segment_ph_cnt=0), the coordinates are the midpoint of the geolocation segment on the reference ground track. (Source: ATL03G ATBD, Section 3.4) | | roll
CHUNKED | FLOAT(:) INVALID_R4B | roll
None | degrees | Spacecraft pitch, roll, and yaw angles, are computed using 3, 2, 1 Euler angle sequence, posted at the geolocation segment rate, and the units are degrees. Angles represent the deviation from a coordinate system whose z-axis is perpendicular to the reference ellipsoid of the Earth (pointing nadir), y-axis is perpendicular to the orbit plane, and x-axis completes the triad in the direction of spacecraft velocity. Note: yaw angle is near 0deg when ICESat-2 is flying forward (positive beta angle), near 180deg when ICESat-2 is flying backward (negative beta angle). (Source: ANCO4) | | segment_dist_x
CHUNKED | DOUBLE(:) | Segment Distance from EQC
None | meters | Along-track distance from the equator crossing to the start of the 20 meter geolocation segment. (Source: Derived) | | segment_id
CHUNKED | INTEGER(:) | along-track segment ID
number.
None | 1 | A 7 digit number identifying the along-track geolocation segment number. These are sequential, starting with 1 for the first segment after an ascending equatorial crossing node. (Source: ATL03 ATBD, Section 3.1) | | segment_length
CHUNKED | DOUBLE(:) | along-track segment length
None | meters | The along-track length of the along-track segment. Nominally these are 20m, but they vary from 19.8m to 20.2m. (Source: ATL03 ATBD, Section 3.1) | | segment_ph_cnt
CHUNKED | INTEGER(:)
0 | Number of photons
None | counts | Number of photons in a given along-track segment. In the case of no photons within the segment (segment_ph_cnt=0), most other parameters are filled with invalid or best-estimate values. Maintaining geolocation segments with no photons allows for the geolocation segment arrays to be directly aligned | | | | | | across the gtx groups. (Source: Derived) | |---------------------------------|-------------------------|---|--------------|---| | sigma_across
CHUNKED | FLOAT(:)
INVALID_R4B | across-track geolocation
uncertainty
None | meters | Estimated Cartesian across-track uncertainity (1-sigma) for the refrerence photon (Source: ATL03G ATBD) | | sigma_along
CHUNKED | FLOAT(:)
INVALID_R4B | along-track geolocation
uncertainity
None | meters | Estimated cartesian along-track uncertainty (1-sigma) for the reference photon (Source: ATL03G ATBD) | | sigma_h
CHUNKED | FLOAT(:)
INVALID_R4B | height uncertainty
None | 1 | Estimated height uncertainty (1-sigma) for the reference photon bounce point. (Source: ATL03G ATBD, Section 3.6) | | sigma_lat
CHUNKED | FLOAT(:)
INVALID_R4B | latitude uncertainty
None | 1 | Estimated geodetic Latitude uncertainty (1-sigma), for the reference photon bounce point. (Source: ATL03G ATBD, Section 3.6) | | sigma_lon
CHUNKED | FLOAT(:)
INVALID_R4B | longitude uncertainty
None | degrees | Estimated geodetic east Longitude uncertainty (1-sigma), for the reference photon bounce point. (Source: ATL03G ATBD, Section 3.6) | | solar_azimuth
CHUNKED | FLOAT(:)
INVALID_R4B | solar azimuth
None | degrees_east | The azimuth of the sun position vector from the reference photon bounce point position in the local ENU frame. The angle is measured from North and is positive towards East. ATL03g provides this value in radians; it is converted to degrees for ATL03 output. (Source: ATL03G ATBD, Section 3.3) | | solar_elevation
CHUNKED | FLOAT(:)
INVALID_R4B | solar elevation
None | degrees | The elevation of the sun position
vector from the reference photon bounce point position in the local ENU frame. The angle is measured from the East-North plane and is positive Up. ATL03g provides this value in radians; it is converted to degress for ATL03 output. (Source: ATL03G ATBD, Section 3.3) | | surf_type
CHUNKED | INTEGER_1(:,:) | Surface Type
None | 1 | Flags describing which surface types this interval is associated with. 0=not type, 1=is type. Order of array is land, ocean, sea ice, land ice, inland water. (Source: ATL03 ATBD, Section 4); (Meanings: [0 1]) (Values: ['not_type', 'is_type']) | | tx_pulse_energy
CHUNKED | FLOAT(:)
INVALID_R4B | Transmit Pulse Energy
None | Joules | The average transmit pulse energy, measured by the internal laser energy monitor, split into per-beam measurements. (Source: ATL02 ATBD, Section 7.2) | | tx_pulse_skew_est
CHUNKED | FLOAT(:)
INVALID_R4B | Transmit Pulse Skew Estimate
None | seconds | The difference between the averages of the lower and upper threshold crossing times. This is an estimate of the transmit pulse skew. (Source: ATL02 ATBD, Section 7.2) | | tx_pulse_width_lower
CHUNKED | FLOAT(:)
INVALID_R4B | Transmit Pulse Energy Lower
Width
None | seconds | The average distance between the lower threshold crossing times measured by the Start Pulse Detector. (Source: ATL02 ATBD, Section 7.2) | | tx_pulse_width_upper
CHUNKED | FLOAT(:)
INVALID_R4B | Transmit Pulse Energy Upper
Width
None | seconds | The average distance between the upper threshold crossing times measured by the Start Pulse Detector. | | | | | | (Source: ATL02 ATBD, Section 7.2) | |--------------------------|-----------------------------|---|---|---| | velocity_sc
CHUNKED | FLOAT(:,:)
INVALID_R4B | spacecraft velocity
None | meters/second | Spacecraft velocity components (east component, north component, up component) an observer on the ground would measure. While values are common to all beams, this parameter is naturally produced as part of geolocation. (Source: ATL03G ATBD) | | yaw
CHUNKED | FLOAT(:) INVALID_R4B | Yaw
None | degrees | Spacecraft pitch, roll, and yaw angles, are computed using 3, 2, 1 Euler angle sequence, posted at the geolocation segment rate, and the units are degrees. Angles represent the deviation from a coordinate system whose z-axis is perpendicular to the reference ellipsoid of the Earth (pointing nadir), y-axis is perpendicular to the orbit plane, and x-axis completes the triad in the direction of spacecraft velocity. Note: yaw angle is near 0deg when ICESat-2 is flying forward (positive beta angle), near 180deg when ICESat-2 is flying backward (negative beta angle). (Source: ANC04) | | Group: /gtx/geophys_corr | | geophysical parameters (da
purposes only. All paramete
Along-Track Segment intervisegment (/geolocation/seg | ac and tide_ocean) are not
ers are posted at the same
val (nominally 20m along-tr
pment_ph_cnt=0), most par
g geolocation segments with | or selected geophysical effects. Additional applied and provided for informational interval as the ICESat-2 Geolocation ack). In the case of no photons within the ameters are filled with invalid or best-th no photons allows for the geolocation oups. | | data_rate | (Attribute) | These parameters are store (nominally every 20 m along | | tion Along Track Segment rate | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | dac
CHUNKED | FLOAT(:)
INVALID_R4B | Dynamic Atmosphere
Correction
None | meters | Dynamic Atmospheric Correction (DAC) includes inverted barometer (IB) effect. This correction is not applied to the photon heights and provided only as supplemental information. (Source: ATL03 ATBD, Section 6.3.2) | | delta_time
CHUNKED | DOUBLE(:) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Elapsed seconds from the ATLAS SDP GPS Epoch, corresponding to the transmit time of the reference photon. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Operations) | | dem_flag
CHUNKED | INTEGER_1(:)
INVALID_I1B | dem source flag
None | 1 | Indicates source of the DEM height. Values: 0=None, 1=Arctic, 2=Global, 3=MSS, 4=Antarctic. (Source: ATL03 ATBD Section 6.3); (Meanings: [0 1 2 3 4]) (Values: ['none', 'arctic', 'global', 'mss', | | İ | Î | į. | i | 1 | |---------------------------------|-----------------------------|---|------------------------------|--| | dem_h
CHUNKED | FLOAT(:)
INVALID_R4B | DEM Height
None | meters | Best available DEM height (in priority of Arctic/Antarctic/Global/MSS) interpolated to the location of the reference photon. (Source: ATL03 ATBD Section 6.3) | | geoid
CHUNKED | FLOAT(:)
INVALID_R4B | Geoid
None | meters | Geoid height above WGS-84 reference ellipsoid (range -107 to 86m) in the tide-free system. Not applied on the product; requested by higher-level products. (see geoid_free2mean to convert to the mean-tide system) (Source: ATL03 ATBD, Section 6.3.8) | | geoid_free2mean
CHUNKED | FLOAT(:)
INVALID_R4B | Geoid Free-to-Mean
conversion
None | meters | Additive value to convert geoid heights from the tide-free system to the mean-tide system. (Add to geoid to get the geoid heights in the mean-tide system.) (Source: ATL03 ATBD, Section 6.3.8) | | tide_earth
CHUNKED | FLOAT(:)
INVALID_R4B | Earth Tide
None | meters | Solid earth tide in the tide-free system. (see tide_earth_free2mean to convert to the mean-tide system) (Source: ATL03 ATBD, Section 6.3.3) | | tide_earth_free2mean
CHUNKED | FLOAT(:)
INVALID_R4B | Earth Tide Free-to-Mean
conversion
None | meters | Additive value to convert solid earth tide from the tide-free system to the mean tide system. (Add to tide_earth to get solid earth tides in the meantide system.) (Source: ATL03 ATBD, Section 6.3.8) | | tide_equilibrium
CHUNKED | FLOAT(:)
INVALID_R4B | Long Period Equilibrium Tide
None | meters | Long period equilibrium tide self-
consistent with ocean tide model
(+-0.04m). This correction is not
applied to the photon heights and is
provided only as a supplemental
information.
(Source: ATL03 ATBD, Section 6.3.1) | | tide_load
CHUNKED | FLOAT(:)
INVALID_R4B | Load Tide
None | meters | Load Tide - Local displacement due to Ocean Loading (-6 to 0 cm). (Source: ATL03 ATBD, Section 6.3.4) | | tide_oc_pole
CHUNKED | FLOAT(:)
INVALID_R4B | Ocean Pole Tide
None | meters | Surface deformation of the Earth due to loading from the centrifugal effect of polar motion upon the oceans (-2 to 2 mm). (Source: ATL03 ATBD, Section 6.3.6) | | tide_ocean
CHUNKED | FLOAT(:)
INVALID_R4B | Ocean Tide
None | meters | Ocean Tides including diurnal and semi-diurnal (harmonic analysis), and longer period tides (dynamic and self-consistent equilibrium). This correction is not applied to the photon heights and provided only as supplemental information. (Source: ATL03 ATBD, Section 6.3.1) | | tide_pole
CHUNKED | FLOAT(:)
INVALID_R4B | Solid Earth Pole Tide
None | meters | Solid Earth Pole Tide -Rotational deformation due to polar motion (-1.5 to 1.5 cm). (Source: ATL03 ATBD, Section 6.3.5) | | Group: /gtx/heights | | Contains arrays of the parameter | ers for each received pho | oton. | | data_rate | (Attribute) | Data are stored at the photon de | etection rate. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | delta_time
CHUNKED | DOUBLE(:) | Elapsed GPS seconds time | seconds since 2018-
01-01 | The transmit time of a given photon, measured in seconds from the ATLAS Standard Data Product Epoch. Note that multiple received photons associated with a single | | | | | | transmit pulse will have the same delta_time. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Operations) | |---------------------------|--------------|--------------------------------------|---------------
---| | dist_ph_across
CHUNKED | FLOAT(:) | Distance off RGT.
None | meters | Across-track distance projected to the ellipsoid of the received photon from the reference ground track. This is based on the Along-Track Segment algorithm described in Section 3.1. (Source: ATL03 ATBD, Section 3.1) | | dist_ph_along
CHUNKED | FLOAT(:) | Distance from equator crossing. None | meters | Along-track distance in a segment projected to the ellipsoid of the received photon, based on the Along-Track Segment algorithm. Total along track distance can be found by adding this value to the sum of segment lengths measured from the start of the most recent reference groundtrack. (Source: ATL03 ATBD, Section 3.1) | | h_ph
CHUNKED | FLOAT(:) | Photon WGS84 Height height | meters | Height of each received photon, relative to the WGS-84 ellipsoid including the geophysical corrections noted in Section 6. Please note that neither the geoid, ocean tide nor the dynamic atmosphere (DAC) corrections are applied to the ellipsoidal heights. (Source: ATL03g ATBD, Section 3.4) | | lat_ph
CHUNKED | DOUBLE(:) | Latitude
latitude | degrees_north | Latitude of each received photon. Computed from the ECF Cartesian coordinates of the bounce point. (Source: ATL03g ATBD, Section 3.4) | | lon_ph
CHUNKED | DOUBLE(:) | Longitude
longitude | degrees_east | Longitude of each received photon. Computed from the ECF Cartesian coordinates of the bounce point. (Source: ATL03g ATBD, Section 3.4) | | pce_mframe_cnt
CHUNKED | UINT_4_LE(:) | PCE Major frame counter
None | counts | The major frame counter is read from the digital flow controller in a given PCE card. The counter identifies individual major frames across diag and science packets. Used as part of the photon ID. (Source: Retained from prior a_alt_science_ph packet) | | ph_id_channel
CHUNKED | UINT_1_LE(:) | Receive channel id
None | 1 | Channel number assigned for each received photon event. This is part of the photon ID. Values range from 1 to 120 to span all channels and rise/fall edges. Values 1 to 60 are for falling edge; PCE1 (1 to 20), PCE 2 (21 to 40) and PCE3 (41 to 60). Values 61 to 120 are for rising edge; PCE1 (61 to 80), PCE 2 (81 to 100) and PC3 (101 to 120). (Source: Derived as part of Photon ID) | | ph_id_count | INTEGER_1(:) | photon event counter | counts | The photon event counter is part of | | CHUNKED | | None | | photon ID and counts from 1 for each channel until reset by laser pulse counter. (Source: Derived as part of Photon ID) | |--|-----------------------------|---|------------------------------|--| | ph_id_pulse
CHUNKED | UINT_1_LE(:) | laser pulse counter
None | counts | The laser pulse counter is part of photon ID and counts from 1 to 200 and is reset for each new major frame. (Source: Derived as part of Photon ID) | | quality_ph
CHUNKED | INTEGER_1(:) | Photon Quality
None | 1 | Indicates the quality of the associated photon. 0=nominal, 1=possible_afterpulse, 2=possible_impulse_response_effect, 3=possible_tep. Use this flag in conjunction with signal_conf_ph to identify those photons that are likely noise or likely signal. (Source: ATL03 ATBD); (Meanings: [0 1 2 3]) (Values: ['nominal', 'possible_afterpulse', 'possible_impulse_response_effect', 'possible_tep']) | | signal_conf_ph CHUNKED | INTEGER_1(:,:) | Photon Signal Confidence
None | 1 | Confidence level associated with each photon event selected as signal. 0=noise. 1=added to allow for buffer but algorithm classifies as background; 2=low; 3=med; 4=high). This parameter is a 5xN array where N is the number of photons in the granule, and the 5 rows indicate signal finding for each surface type (in order: land, ocean, sea ice, land ice and inland water). Events not associated with a specific surface type have a confidence level of -1. Events evaluated as TEP returns have a confidence level of -2. (Source: ATL03 ATBD, Section 5, Conf); (Meanings: [-2 -1 0 1 2 3 4]) (Values: ['possible_tep', 'not_considered', 'noise', 'buffer', 'low', 'medium', 'high']) | | Group: /gtx/signal_find_output | | confidence flag set, based on the | e algorithm in Section 5. | photons were selected, and the
Histogram parameters are from the
et the confidence parameter for a given | | data_rate | (Attribute) | Data are stored at the rate of sig | nal finding time intervals | S. | | Group: /gtx/signal_find_output/surf_type | | Surface-type specific parameters output for each time interval for which signal photons were selected, based on the algorithm in Section 5. Histogram parameters are from the histogram that was used to identify signal photons and set the confidence parameter for a given time increment. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | bckgrd_mean
CHUNKED | FLOAT(:)
INVALID_R4B | background counts per bin
None | counts | The mean of the number of background counts expected in one height bin of the histogram of width dzATM over time period, dtATM (Source: ATL03 ATBD, Section 5) | | bckgrd_sigma
CHUNKED | FLOAT(:)
INVALID_R4B | background counts per bin
sigma
None | counts | The standard deviation of the number of background counts expected in one height bin of the histogram of width dzATM over time period, dtATM (Source: ATL03 ATBD, Section 5) | | delta_time
CHUNKED | DOUBLE(:) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS | | | | | | Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived via Time Tagging) | |-------------------------|-----------------------------|--|------------------------------|---| | t_pc_delta
CHUNKED | FLOAT(:)
INVALID_R4B | bin width size
None | seconds | The histogram bin width (integration time) along-track used to find signal photons. (Source: ATL03 ATBD, Section 5) | | z_pc_delta
CHUNKED | FLOAT(:)
INVALID_R4B | bin height size
None | meters | Height bin size of the histogram used to find signal photons. (Source: ATL03 ATBD, Section 5) | | Group: /orbit_info | | Contains data that are commor constants for a given granule. | n among all beams for the | e granule. These parameters are | | data_rate | (Attribute) | These parameters are constant | t for a given granule. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | crossing_time CHUNKED | DOUBLE(:) | Ascending Node Crossing Time time | seconds since 2018-
01-01 | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | cycle_number
CHUNKED | INTEGER_1(:) | Cycle Number
None | counts | Tracks the number of 91-day cycles in the mission, beginning with 01. A unique orbit number can be determined by subtracting 1 from the cycle_number, multiplying by 1387 and adding the rgt value. (Source: POD/PPD) | | lan
CHUNKED | DOUBLE(:) | Ascending Node Longitude
None | degrees_east | Longitude at the ascending node crossing. (Source: POD/PPD) | | orbit_number
CHUNKED | UINT_2_LE(:) | Orbit Number
None | 1 | Unique identifying number for each planned ICESat-2 orbit. (Source: Operations) | | rgt
CHUNKED | INTEGER_2(:) | Reference Ground track
None | counts | The reference ground
track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT2L and GT2R. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: POD/PPD) | | sc_orient
CHUNKED | INTEGER_1(:) | Spacecraft Orientation
None | 1 | This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. (Source: POD/PPD); (Meanings: [0 1 2]) (Values: ['backward', 'forward', 'transition']) | |-----------------------------------|-----------------------------|---|------------------------------|--| | sc_orient_time CHUNKED | DOUBLE(:) | Time of Last Spacecraft Orientation Change time | seconds since 2018-
01-01 | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.0000002 UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | Group: /quality_assessment | | Contains quality assessment data. This may include QA counters, QA along-track data and/or QA summary data. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | delta_time
CONTIGUOUS | DOUBLE(1) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Operations) | | qa_granule_fail_reason
COMPACT | INTEGER(1) | Granule Failure Reason
None | 1 | Flag indicating granule failure reason. 0=no failure; 1=processing error; 2=Insufficient output data was generated; 3=TBD Failure; 4=TBD_Failure; 5=other failure. (Source: Operations); (Meanings: [0 1 2 3 4 5]) (Values: ['no_failure', 'PROCESS_ERROR', | | | | | | 'INSUFFICIENT_OUTPUT', 'failure_3', 'failure_4', 'OTHER_FAILURE']) | | |--|-----------------------------|--|---------|---|--| | qa_granule_pass_fail
COMPACT | INTEGER(1) | Granule Pass Flag
None | 1 | Flag indicating granule quality. 0=granule passes automatic QA. 1=granule fails automatic QA. (Source: Operations); (Meanings: [0 1]) (Values: ['PASS', 'FAIL']) | | | Group: /quality_assessment/gtx | | Each group contains the quality assessment information for one Ground Track. | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | qa_perc_signal_conf_ph_high
CONTIGUOUS | DOUBLE(1,5) | Percent_Signal_Conf_Ph_Hlgh
None | percent | The percentage of high-confidence signal photons for each surface type, based on the total number of photons for each surface type. (Source: ATL03 ATBD, Section 8) | | | qa_perc_signal_conf_ph_low
CONTIGUOUS | DOUBLE(1,5) | Percent_Signal_Conf_Ph_Low
None | percent | The percentage of low-confidence signal photons for each surface type, based on the total number of photons for each surface type. (Source: ATL03 ATBD, Section 8) | | | qa_perc_signal_conf_ph_med
CONTIGUOUS | DOUBLE(1,5) | Percent_Signal_Conf_Ph_Med
None | percent | The percentage of medium-confidence signal photons for each surface type, based on the total number of photons for each surface type. (Source: ATL03 ATBD, Section 8) | | | qa_perc_surf_type
CONTIGUOUS | DOUBLE(1,5) | Percent_Surface_Type None | percent | The percentage of geolocation segments for each surface type, based on the total number of geolocation segments. (Source: ATL03 ATBD, Section 8) | | | qa_total_signal_conf_ph_high
CONTIGUOUS | INTEGER_8(1,5) | Total_Signal_Conf_Ph_Hlgh
None | 1 | The total number of high-confidence signal photons for each surface type. (Source: ATL03 ATBD, Section 8) | | | qa_total_signal_conf_ph_low
CONTIGUOUS | INTEGER_8(1,5) | Total_Signal_Conf_Ph_Low
None | 1 | The total number of low-confidence signal photons for each surface type. (Source: ATL03 ATBD, Section 8) | | | qa_total_signal_conf_ph_med
CONTIGUOUS | INTEGER_8(1,5) | Total_Signal_Conf_Ph_Med
None | 1 | The total number of medium-
confidence signal photons for each
surface type.
(Source: ATL03 ATBD, Section 8) | |