Soil Moisture Active Passive (SMAP) Mission

Level 2 Active Soil Moisture Product Specification Document

Initial Release

R. Scott Dunbar Seungbum Kim

June 12, 2014

JPL D-72546

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is in the Product Data Management System (PDMS): https://pdms.ipl.nasa.gov/

Not for Public Release or Redistribution. The technical data in this document is controlled under the U.S. Export Regulations; release to foreign persons may require an export authorization.

National Aeronautics and Space Administration

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109-8099 California Institute of Technology

Soil Moisture Active Passive (SMAP) Level 2 Active Soil Moisture Product Specification Document

Initial Release

Prepared by:		
Seungbum Kim SMAP Algorithm Development Team	Date	
R. Scott Dunbar SMAP Algorithm Development Lead	Date	
Approved by:		
Jennifer Cruz SMAP SDS Project Element Manager	Date	
Simon Yueh SMAP Project Scientist	Date	

DOCUMENT CHANGE LOG

REVISION	DATE	SECTIONS CHANGED	REASON FOR CHANGE (ECR #)
-	12 June 2014		Initial Release

TBD, TBR, TBS LOG

Section/Page	Description	Due Date

TABLE OF CONTENTS

1	INTI	ROD	UCTION	9
	1.1	Ide	ntification	9
	1.2	Sco	pe	9
	1.3	The	SMAP Mission	9
	1.4	Dat	a Products	. 12
	1.5	L2_	SM_A Overview	. 13
2	DAT	A PI	RODUCT ORGANIZATION	. 14
	2.1	File	Format	14
	2.2	HD	F5 Notation	14
	2.2	2.1	HDF5 File	14
	2.2	2.2	HDF5 Group	14
	2.2	2.3	HDF5 Dataset	15
	2.2	2.4	HDF5 Datatype	. 15
	2.2	2.5	HDF5 Dataspace	16
	2.2	2.6	HDF5 Attribute	. 16
	2.3	SM	AP File Organization	. 16
	2.3	3.1	Structure	16
	2.3	3.2	Data	16
	2.3	3.3	Element Types	. 17
	2.3	3.4	File Level Metadata	18
	2.3	3.5	Local Metadata	18
	2.4	Dat	a Definition Standards	19
	2.4	1.1	Double Precision Time Variables	20
	2.4	1.2	Array Representation	20
	2.5	Fill	/Gap Values	. 21
	2.6		xible Data Design	
3	EAS	E2 G	RID	. 24
4	PRO	DUC	T DEFINITION	. 26
	4.1	Ove	erview	26
	4.2	Pro	duct Names	26

4.3	Vol	ume	27
4.4	L2_	SM_A Product Metadata	27
4.5	Data	a Structure	38
4.6	Para	ameter Definitions	46
4.6	5.1	altitude_std_dev	46
4.6	5.2	bare_soil_roughness_retrieved	46
4.6	5.3	bare_soil_roughness_tabular	46
4.6	5.4	boresight_incidence_std_dev	46
4.6	5.5	cell_radar_mode_flag	47
4.6	6.6	distance_from_nadir	47
4.6	5.7	earth_boresight_azimuth_mean	47
4.6	5.8	EASE_column_index	48
4.6	5.9	EASE_row_index	48
4.6	5.10	faraday_rotation_angle	48
4.6	5.11	freeze_thaw	48
4.6	5.12	kp_hh	49
4.6	5.13	kp_hh_aft	49
4.6	5.14	kp_hh_fore	49
4.6	5.15	kp_vv	49
4.6	6.16	kp_vv_aft	50
4.6	5.17	kp_vv_fore	50
4.6	5.18	kp_xpol	50
4.6	5.19	kp_xpol_aft	50
4.6	5.20	kp_xpol_fore	51
4.6	5.21	landcover_class	51
4.6	5.22	latitude	52
4.6	5.23	longitude	52
4.6	5.24	normalized_difference_vegetation_index	52
4.6	5.25	num_input_sigma0s_hh	52
4.6	5.26	num_input_sigma0s_vv	53
4.6	5.27	num_input_sigma0s_xpol	53
4.6	5.28	num_time_series	53
4.6	5.29	radar_vegetation_index	53

4.6.30	retrieval_qual_flag_cube	. 54
4.6.31	retrieval_qual_flag_kvz	. 54
4.6.32	retrieval_qual_flag_wagner	. 55
4.6.33	sigma0_hh_mean	. 56
4.6.34	sigma0_hh_mean_aft	. 56
4.6.35	sigma0_hh_mean_fore	. 56
4.6.36	sigma0_hh_std_dev	. 56
4.6.37	sigma0_hh_std_dev_aft	. 57
4.6.38	sigma0_hh_std_dev_fore	. 57
4.6.39	sigma0_xpol_mean	. 57
4.6.40	sigma0_xpol_mean_aft	. 57
4.6.41	sigma0_xpol_mean_fore	. 58
4.6.42	sigma0_xpol_std_dev	. 58
4.6.43	sigma0_xpol_std_dev_aft	. 58
4.6.44	sigma0_xpol_std_dev_fore	. 58
4.6.45	sigma0_qual_flag_hh	. 58
4.6.46	sigma0_qual_flag_xpol	. 60
4.6.47	sigma0_qual_flag_vv	. 62
4.6.48	sigma0_vv_mean	. 64
4.6.49	sigma0_vv_mean_aft	. 64
4.6.50	sigma0_vv_mean_fore	. 65
4.6.51	sigma0_vv_std_dev	. 65
4.6.52	sigma0_vv_std_dev_aft	. 65
4.6.53	sigma0_vv_std_dev_fore	. 65
4.6.54	soil_moisture_wagner	. 65
4.6.55	soil_moisture_error	. 66
4.6.56	soil_moisture_snapshot	. 66
4.6.57	soil_moisture_snapshot_DVZ	. 66
4.6.58	soil_moisture_snapshot_shi	. 66
4.6.59	soil_moisture_time_series	. 67
4.6.60	soil_moisture_time_series_KVZ	. 67
4.6.61	spacecraft_overpass_time_seconds	. 67
4.6.62	spacecraft_overpass_time_utc	. 67

Ju	ine 12	2, 2014	SMAP L2 Active Soil Moisture Product Specification I	Document
	4	.6.63	surface_flag	67
	4	.6.64	surface_temperature	69
	4	.6.65	vegetation_water_content_NDVI	69
	4	.6.66	vegetation_water_content_RVI	69
5	RE	EFEREN	ICES	71
	5.1	Requ	uirements	71
	5.2	Plans	s	71
	5.3	Algo	orithm Theoretical Basis Documents	71
	5.4	Prod	uct Specification Documents	72
	5.5	Othe	ers	73
6	AP	PENDI	X A: ACRONYMS AND ABBREVIATIONS	74
7	AP	PENDE	X B: CODE EXAMPLES	79

1 INTRODUCTION

1.1 Identification

This is the Data Product Specification (DPS) Document for the Level 2 Active Soil Moisture Product for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The product provides gridded data of SMAP radar-based soil moisture retrieval, ancillary data, and quality-assessment flags on a 3-km Earth-fixed grid. Only cells that are covered by the actual swath are written in the product.

1.2 Scope

This document describes the file format and data contents of the Level 2 Active Soil Moisture Data Product (hereafter referred to as 'L2_SM_A' for brevity) for external software interfaces. The SMAP Science Data Management and Archive Plan Document provides a more comprehensive explanation of this product within the context of the SMAP instrument, algorithms, and software.

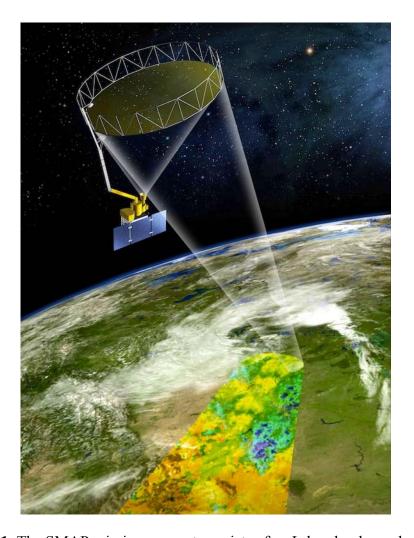
1.3 The SMAP Mission

The SMAP mission is a unique mission that combines passive (radiometer) and active (radar) observations to provide "global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage". The resulting space-based hydrosphere state measurements will improve:

- Understanding of the processes that link the terrestrial water, energy and carbon cycles
- Estimate of global water and energy fluxes at the land surface
- Measurement of net carbon flux in boreal landscapes
- Weather and climate forecast skill
- Flood prediction and drought monitoring capabilities

Table 1 is a summary of the SMAP instrument functional requirements derived from its science measurement needs. The goal is to combine the various positive attributes of the radar and radiometer observations, including spatial resolution, sensitivity to soil moisture, surface roughness, and vegetation, to estimate soil moisture at a resolution of 10 km and freeze-thaw state at a resolution of 1-3 km.

Table 1: SMAP Mission Requirements


Scientific Measurement Requirements	Instrument Functional Requirements			
Soil Moisture: ~± 0.04 cm³/cm³ volumetric accuracy (1-sigma) in the top 5 cm for vegetation water content ≤ 5 kg/m² Hydrometeorology at ~10 km resolution Hydroclimatology at ~40 km resolution	L-Band Radiometer (1.41 GHz): Polarization: V, H, T ₃ , and T ₄ Resolution: 40 km Radiometric Uncertainty*: 1.3 K L-Band Radar (1.26 and 1.29 GHz): Polarization: VV, HH, HV (or VH) Resolution: 10 km Relative accuracy*: 0.5 dB (VV and HH) Constant incidence angle** between			
Freeze/Thaw State: Capture freeze/thaw state transitions in integrated vegetation-soil continuum with two-day precision at the spatial scale of landscape variability (~3 km)	35° and 50° L-Band Radar (1.26 GHz & 1.29 GHz): Polarization: HH Resolution: 3 km Relative accuracy*: 0.7 dB (1 dB per channel if 2 channels are used) Constant incidence angle** between 35° and 50°			
Sample diurnal cycle at consistent time of day (6 am/6 pm Equator crossing); Global, ~3 day (or better) revisit; Boreal, ~2 day (or better) revisit Observation over minimum of three annual cycles	Swath Width: ~1000 km Minimize Faraday rotation (degradation factor at L-band) Baseline three-year mission life			
* Includes precision and calibration stability ** Defined without regard to local topographic variation				

The SMAP instrument incorporates an L-band radar and an L-band radiometer that share a single feedhorn and parabolic mesh reflector. As shown in Figure 1, the reflector is offset from nadir and rotates about the nadir axis at 14.6 rpm (nominal), providing a conically scanning antenna beam with a surface incidence angle of approximately 40°. The provision of constant incidence angle across the swath simplifies data processing and enables accurate repeat-pass estimates of soil moisture and freeze/thaw change. The reflector has a diameter of 6 m, providing a radiometer 3 dB antenna footprint of 40 km (root-ellipsoidal-area). The real-aperture radar footprint is 30 km, defined by the two-way antenna beamwidth. The real-aperture radar and radiometer data will be collected globally during both ascending and descending passes.

To obtain the desired high spatial resolution, the radar employs range and Doppler discrimination. The radar data can be processed to yield resolution enhancement to 1-3 km spatial resolution over the outer 70% of the 1000-km swath. Data volume constraints prohibit

the downlinking of the entire radar data acquisition. Radar measurements that enable high-resolution processing will be collected during the morning overpass over all land regions as well as over surrounding coastal oceans. During the evening overpass, data north of 45° N will be collected and processed to support robust detection of landscape freeze/thaw transitions. The SMAP baseline orbit parameters are:

- Orbit altitude: 685 km (2-3 day average revisit globally and 8-day exact repeat)
- Inclination: 98 degrees, sun-synchronous
- Local time of ascending node: 6 pm (6 am descending local overpass time)

Figure 1: The SMAP mission concept consists of an L-band radar and radiometer sharing a single spinning 6-m mesh antenna in a sun-synchronous dawn / dusk orbit.

The SMAP radiometer measures the four Stokes parameters, T_H , T_V , T_3 , and T_4 at 1.41 GHz. The T_H and T_V channels are the pure horizontally and vertically polarized brightness temperatures. The cross-polarized T_3 -channel measurement can be used to correct for possible Faraday rotation caused by the ionosphere. Mission planners expect that the selection of the 6 am sun-synchronous SMAP orbit should minimize the effect of Faraday rotation.

Anthropogenic Radio Frequency Interference (RFI), principally from ground-based surveillance radars, can contaminate both radar and radiometer measurements at L-band. Early measurements and results from ESA's Soil Moisture and Ocean Salinity (SMOS) mission indicate that in some regions RFI is present and detectable. The SMAP radar and radiometer electronics and algorithms include design features to mitigate the effects of RFI. The SMAP radar utilizes selective filters and an adjustable carrier frequency to tune to predetermined RFI-free portions of the spectrum while on orbit. The SMAP radiometer will implement a combination of time and frequency diversity, kurtosis detection, and use of T₄ thresholds to detect and where possible mitigate RFI.

1.4 Data Products

The SMAP mission will generate 15 different distributable data products. The products represent four levels of data processing. Level 1 products contain instrument related data. Level 1 products appear in granules that are based on half orbits of the SMAP satellite. The Northernmost and Southernmost orbit locations demarcate half orbit boundaries. Level 2 products contain output from geophysical retrievals that are based on instrument data. Level 2 products also appear in half orbit granules. Level 3 products contain global output of the Level 2 geophysical retrievals for an entire day. Level 4 products contain output from geophysical models that employ SMAP data.

Table 1 lists the distributable SMAP data products. The table specifies two sets of short names. The SMAP Mission product short names were adopted by the SMAP mission to identify products. Users will find those short names in SMAP mission documentation, SMAP product file names and in the product metadata. The Data Centers will use ECS short names to categorize data products in their local databases. ECS short names will also appear in SMAP product metadata.

SMAP Product Short Name	ECS Short Name	Description	Granularity
L1A_Radar	SPL1AA	Parsed radar instrument telemetry	
L1A_Radiometer	SPL1AP	Parsed radiometer instrument telemetry	
L1B_S0_LoRes	SPL1BS0	Low resolution radar σ_0 in time order	Half orbit
L1C_S0_HiRes	SPL1CS0	High resolution radar σ_0 on swath grid	Half orbit
L1B_TB	SPL1BTB	Radiometer T _B in time order	Half orbit
L1C_TB	SPL1CTB	Radiometer T _B on Earth-fixed grids	Half orbit
L2 SM A	SPL2SMA	Radar soil moisture	Half orbit
L2_SM_P	SPL2SMP	Radiometer soil moisture	Half orbit
L2_SM_AP	SPL2SMAP	Radar-radiometer soil moisture	Half orbit
I 2 ET A	CDI 2ETA	Daily, global composite from //they, state	North of

Table 2: Standard SMAP data products

Daily global composite freeze/thaw state

Daily global composite radiometer soil

Daily global composite radar soil moisture

45°N

Global

Global

SPL3FTA

SPL3SMA

SPL3SMP

L3 FT A

L3 SM A

L3 SM P

		moisture	
L3_SM_AP	SPL3SMAP	Daily global composite radar-radiometer soil moisture	Global
L4_SM	SPL4TSM	Surface and root-zone soil moisture	Global
L4_C	SPL4C	Carbon net ecosystem exchange	North of 45°N

1.5 L2_SM_A Overview

The SMAP L2_SM_A product is derived from the SMAP L1C_S0_Hires product, which contains swath-gridded radar backscatter observations acquired by the radar and processed using synthetic-aperture processing providing measurements at 1 km resolution. To generate the standard L2_SM_A product the processing software ingests the 6:00 am descending half-orbit granules of the L1C_S0_Hires product data (data from the 6:00 pm ascending half-orbit granules are not currently considered by the L2_SM_A processing software). The 1 km sigma0 data are gridded on a 3 km Earth-fixed grid. The gridded data are then inspected for retrievability criteria according to input data quality, ancillary data availability, and land cover conditions. When retrievability criteria are met, the software invokes the baseline retrieval algorithm to generate soil moisture retrieval. Only cells that are covered by the actual swath for a given projection are written in the product.

The final L2_SM_A product contains gridded data of SMAP radar-based soil moisture retrieval, ancillary data, and quality-assessment flags on the global 3-km EASE2 Grid designed by NSIDC for SMAP.

2 DATA PRODUCT ORGANIZATION

2.1 File Format

All SMAP standard products are in the Hierarchical Data Format version 5 (HDF5). The HDF5 is a general-purpose file format and programming library for storing scientific data. The National Center for Supercomputing Applications (NCSA) at the University of Illinois developed HDF to help scientists share data more easily. Use of the HDF library enables users to read HDF files regardless of the underlying computing environments. HDF files are equally accessible in Fortran, C/C++, and other high-level computation packages such as IDL or MATLAB.

The HDF Group, a spin-off organization of the NCSA, is responsible for development and maintenance of HDF. Users should reference The HDF Group website at http://www.hdfgroup.org to download HDF software and documentation.

2.2 HDF5 Notation

HDF5 represents a significant departure from the conventions of previous versions of HDF. The changes that appear in HDF5 provide flexibility to overcome many of the limitations of previous releases. The basic building blocks have been largely redefined, and are more powerful but less numerous. The key concepts of the HDF5 Abstract Data Model are Files, Groups, Datasets, Datatypes, Attributes and Property Lists. The following sections provide a brief description of each of these key HDF5 concepts.

2.2.1 **HDF5 File**

A File is the abstract representation of a physical data file. Files are containers for HDF5 Objects. These Objects include Groups, Datasets, and Datatypes.

2.2.2 HDF5 Group

Groups provide a means to organize the HDF5 Objects in HDF5 Files. Groups are containers for other Objects, including Datasets, named Datatypes and other Groups. In that sense, groups are analogous to directories that are used to categorize and classify files in standard operating systems.

The notation for files is identical to the notation used for Unix directories. The root Group is "/". A Group contained in root might be called "/myGroup." Like Unix directories, Objects appear in Groups through "links". Thus, the same Object can simultaneously be in multiple Groups.

2 2 3 HDF5 Dataset

The Dataset is the HDF5 component that stores user data. Each Dataset associates with a Dataspace that describes the data dimensions, as well as a Datatype that describes the basic unit of storage element. A Dataset can also have Attributes.

2.2.4 **HDF5 Datatype**

A Datatype describes a unit of data storage for Datasets and Attributes. Datatypes are subdivided into Atomic and Composite Types.

Atomic Datatypes are analogous to simple basic types in most programming languages. HDF5 Atomic Datatypes include Time, Bitfield, String, Reference, Opaque, Integer, and Float. Each atomic type has a specific set of properties. Examples of the properties associated with Atomic Datatypes are:

- Integers are assigned size, precision, offset, pad byte order, and are designated as signed or unsigned.
- Strings can be fixed or variable length, and may or may not be null-terminated.
- References are constructs within HDF5 Files that point to other HDF5 Objects in the same file.

HDF5 provides a large set of predefined Atomic Datatypes. Table 3 lists the Atomic Datatypes that are used in SMAP data products.

HDF5 Atomic	Description
Datatypes	
H5T_STD_U8LE	unsigned, 8-bit, little-endian integer
H5T_STD_U16LE	unsigned, 16-bit, little-endian integer
H5T_STD_U32LE	unsigned, 32-bit, little-endian integer
H5T_STD_U64LE	unsigned, 64-bit, little-endian integer
H5T_STD_I8LE	signed, 8-bit, little-endian integer
H5T_STD_I16LE	signed, 16-bit, little-endian integer
H5T_STD_I32LE	signed, 32-bit, little-endian integer
H5T_STD_I64LE	Signed, 64-bit, little-endian integer
H5T_IEEE_F32LE	32-bit, little-endian, IEEE floating point
H5T_IEEE_F64LE	64-bit, little-endian, IEEE floating point
H5T_C_S1	character string made up of one or more bytes

Table 3: HDF5 Atomic Datatypes

Composite Datatypes incorporate sets of Atomic datatypes. Composite Datatypes include Array, Enumeration, Variable Length and Compound.

- The Array Datatype defines a multi-dimensional array that can be accessed atomically.
- Variable Length presents a 1-D array element of variable length. Variable Length Datatypes are useful as building blocks of ragged arrays.

 Compound Datatypes are composed of named fields, each of which may be dissimilar Datatypes. Compound Datatypes are conceptually equivalent to structures in the C programming language.

Named Datatypes are explicitly stored as Objects within an HDF5 File. Named Datatypes provide a means to share Datatypes among Objects. Datatypes that are not explicitly stored as Named Datatypes are stored implicitly. They are stored separately for each Dataset or Attribute they describe.

None of the SMAP data products employ Enumeration or Compound data types.

2.2.5 **HDF5 Dataspace**

A Dataspace describes the rank and dimension of a Dataset or Attribute. For example, a "Scalar" Dataspace has a rank of 1 and a dimension of 1. Thus, all subsequent references to "Scalar" Dataspace in this document imply a single dimensional array with a single element.

Dataspaces provide considerable flexibility to HDF5 products. They incorporate the means to subset associated Datasets along any or all of their dimensions. When associated with specific properties, Dataspaces also provide the means for Datasets to expand as the application requires.

2.2.6 **HDF5 Attribute**

An Attribute is a small aggregate of data that describes Groups or Datasets. Like Datasets, Attributes are also associated with a particular Dataspace and Datatype. Attributes cannot be subsetted or extended. Attributes themselves cannot have Attributes.

2.3 SMAP File Organization

2.3.1 Structure

SMAP data products follow a common convention for all HDF5 Files. Use of this convention provides uniformity of data access and interpretation.

The SMAP Project uses HDF5 Groups to provide an additional level of data organization. All metadata that pertain to the complete data granule are members of the "/Metadata" Group. All other data are organized within Groups that are designed specifically to handle the structure and content of each particular data product.

2.3.2 **Data**

All data in HDF5 files are stored in individual Datasets. All of the Datasets in an SMAP product are assigned to an HDF5 Group. A standard field name is associated with each Dataset. The field name is a unique string identifier. The field name corresponds to the name of the data element the Dataset stores. This document lists these names with the description of each data element that they identify.

Each Dataset is associated with an HDF5 Dataspace and an HDF5 Datatype. They provide a minimally sufficient set of parameters for reading the data using standard HDF5 tools.

2.3.3 Element Types

SMAP HDF5 employs the Data Attribute "Type" to classify every data field as a specific data type. The "Type" is an embellishment upon the standard HDF5 Datatypes that is designed specifically to configure SMAP data products.

Table 4 lists all of the "Type" strings that appear in the SMAP data products. The table maps each SMAP "Type" to a specific HDF5 Datatype in both the HDF5 file and in the data buffer. The table also specifies the common conceptual data type that corresponds to the "Type" in SMAP executable code.

Type	HDF5 Datatype	HDF5 Datatype (Buffer)	Conceptual
	(File)		Type
Unsigned8	H5T_STD_U8LE	H5T_NATIVE_UCHAR	unsigned
			integer
Unsigned16	H5T_STD_U16LE	H5T_NATIVE_USHORT	unsigned
			integer
Unsigned24	H5T_STD_U16LE,	H5T_NATIVE_INT	unsigned
	with precision set to		integer
	24 bits, and size set		
	to 3 bytes.		
Unsigned32	H5T_STD_U32LE	H5T_NATIVE_UINT	unsigned
			integer
Unsigned64	H5T_STD_U64LE	H5T_NATIVE_ULLONG	unsigned
			integer
Signed8	H5T_STD_I8LE	H5T_NATIVE_SCHAR	signed integer
Signed16	H5T_STD_I16LE	H5T_NATIVE_SHORT	signed integer
Signed32	H5T_STD_I32LE	H5T_NATIVE_INT	signed integer
Signed64	H5T_STD_I64LE	H5T_NATIVE_LLONG	signed integer
Float32	H5T_IEEE_F32LE	H5T_NATIVE_FLOAT	floating point
Float64	H5T_IEEE_F64LE	H5T_NATIVE_DOUBLE	floating point
FixLenStr	H5T_C_S1	H5T_NATIVE_CHAR	character
			string
VarLenStr	H5T_C_S1, where	H5T_NATIVE_CHAR	character
	the length is set to		string
	H5T_VARIABLE		

Table 4: Element Type Definitions

SMAP HDF5 files employ two different types of string representation. "VarLenStr" are strings of variable length. "VarLenStr" provides greater flexibility to represent character strings. In an effort to make SMAP HDF5 more friendly to users who wish to use netCDF

software, SMAP products restrict the use of "VarLenStr". "FixLenStr" are strings with a prescribed fixed-length. "FixLenStr" are useful for fixed length strings that are stored in large multi-dimension array. UTC time stamps are an excellent example of the type of data that store well in a "FixLenStr".

2.3.4 File Level Metadata

All metadata that describe the full content of each granule of the SMAP data product are stored within the explicitly named "/Metadata" Group. SMAP metadata are handled using exactly the same procedures as those that are used to handle SMAP data. The contents of each Attribute that stores metadata conform to one of the SMAP Types. Like data, each metadata element is also assigned a shape. Most metadata elements are stored as scalars. A few metadata elements are stored as arrays.

SMAP data products represent file level metadata in two forms. One form appears in one or more Attributes within the Metadata Group. Combined, those Attributes contain a complete representation of the product metadata. The content conforms to the ISO 19115-2 models in ISO 19139 compliant XML.

The second form of the metadata appears in a set of HDF5 Groups under the "/Metadata" Group. Each of these HDF5 Groups represents one of the major classes in the ISO 19115-2 model. These HDF5 Groups contain a set of HDF5 Attributes. Each HDF5 Attributes represents a specific ISO attribute of the associated ISO class. Although this representation inherits design from the ISO model, it does not completely conform to the model. In many cases, the names of the HDF5 Attributes match those used in the ISO model. In some situations, names were changed to provide greater clarity to SMAP users who are not familiar with the ISO model. Furthermore, to ease metadata searches, the structure of Groups within Groups was limited to four levels.

2.3.5 Local Metadata

SMAP standards incorporate additional metadata that describe each HDF5 Dataset within the HDF5 file. Each of these metadata elements appear in an HDF5 Attribute that is directly associated with the HDF5 Dataset. Wherever possible, these HDF5 Attributes employ names that conform to the Climate and Forecast (CF) conventions. Table 5 lists the CF names for the HDF5 Attributes that SMAP products typically employ.

CF Compliant Attribute Name	Description	Required?
units	Units of measure. Appendix E lists applicable units for various data elements in this product.	Yes
valid_max	The largest valid value for any element in the Dataset. The data type in valid_max matches the type of the associated Dataset. Thus, if the	No

Table 5: SMAP Specific Local Attributes

CF Compliant Attribute Name	Description	Required?
	associated Dataset stores float32 values, the corresponding valid_max will also be float32.	
valid_min	The smallest valid value for any element in the Dataset. The data type in valid_min matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding valid_min will also be float32.	No
_FillValue	Specification of the value that will appear in the Dataset when an element is missing or undefined. The data type of _FillValue matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding _FillValue will also be float32.	Yes for all numeric data types
long_name	A descriptive name that clearly describes the content of the associated Dataset.	Yes
coordinates	Identifies auxiliary coordinate variables in the data product.	No
flag_values	Provides a list of flag values that appear in bit flag variables. Should be used in conjunction with local HDF5 attribute <i>flag_meanings</i> . Only appears with bit flag variables.	No
flag_masks	Provides a list of bit fields that express Boolean or enumerated flags. Only appears with bit flag variables or enumerated data types.	No
flag_meanings	Provides descriptive words or phrases for each potential bit flag value. Should be used in conjunction with local HDF5 attribute <i>flag_values</i> .	No

2.4 Data Definition Standards

Section 4.6 of this document specifies the characteristics and definitions of every data element stored in this SMAP data product. Table 6 defines each of the specific characteristics that are listed in that section of this document. Some of these characteristics correspond with the SMAP HDF5 Attributes that are associated with each Dataset. Data element characteristics that correspond to SMAP HDF5 Attributes bear the same name. The remaining characteristics are descriptive data that help users better understand the data product content.

In some situations, a standard characteristic may not apply to a data element. In those cases, the field contains the character string 'n/a'. Hexadecimal representation sometimes indicates data content more clearly. Numbers represented in hexadecimal begin with the character string '0x'.

Table 6: Data Element Characteristic Definitions

Characteristic	Definition
Type	The data representation of the element within the storage medium. The
	storage class specification must conform to a valid SMAP type. The
	first column in table 3 lists all of the valid values that correspond to this
	characteristic.
Shape	The name of the shape data element that specifies the rank and
	dimension of a particular data set.
Valid_max	The expected minimum value for a data element. In most instances,
	data element values never fall below this limit. However, some data
	elements, particularly when they do not reflect normal geophysical
	conditions, may contain values that fall below this limit.
Valid_min	The expected maximum value for a data element. In most instances,
	data element values never exceed this limit. However, some data
	elements, particularly when they do not reflect normal geophysical
	conditions, may contain values that exceed this limit.
Valid Values	Some data elements may store a restricted set of values. In those
	instances, this listing specifies the values that the data element may
	store.
Nominal	Some data elements have an expected value. In those instances, this
Value	listing provides that expected value. Nominal values are particularly
	common among a subset of the metadata elements.
String Length	This characteristic specifies the length of the data string that represents
	a single instance of the data element. This characteristic appears
	exclusively for data elements of FixLenStr type.
Units	Units of measure. Typical values include "deg", "degC", "Kelvins",
	"m/s", "m", "m**2", "s" and "counts". Appendix A and Appendix E
	include references to important data measurement unit symbols.

2.4.1 **Double Precision Time Variables**

SMAP double precision time variables contain measurements relative to the J2000 epoch. Thus, these variables represent a real number of Standard International (SI) compatible seconds since 11:58:55.816 on January 1, 2000 UTC.

2.4.2 **Array Representation**

This document employs array notation to demonstrate and clarify the correspondence among data elements in different product data elements. The array notation adopted in this document is similar to the standards of the Fortran programming language. Indices are one based. Thus, the first index in each dimension is one. This convention is unlike C or C++, where the initial index in each dimension is zero. In multidimensional arrays, the leftmost subscript index changes most rapidly. Thus, in this document, array elements ARRAY(15,1,5) and ARRAY(16,1,5) are stored contiguously.

HDF5 is designed to read data seamlessly regardless of the computer language used to write an application. Thus, elements that are contiguous using the dimension notation in this document will appear in contiguous locations in arrays for reading applications in any language with an HDF5 interface.

This document differentiates among array indices based on relative contiguity of storage of elements referenced with consecutive numbers in that index position. A faster or fastest moving index implies that the elements with consecutive numbers in that index position are stored in relative proximity in memory. A slower or slowest moving index implies that the elements referenced with consecutive indices are stored more remotely in memory. For instance, given array element ARRAY(15,1,5) in Fortran, the first index is the fastest moving index and the third index is the slowest moving index. On the other hand, given array element array[4][0][14] in C, the first index is the slowest moving index and the third index is the fastest moving index.

2.5 Fill/Gap Values

SMAP data products employ fill and gap values to indicate when no valid data appear in a particular data element. Fill values ensure that data elements retain the correct shape. Gap values locate portions of a data stream that do not appear in the output data file.

Fill values appear in the SMAP L2_SM_A Product when the L2_SM_A SPS can process some, but not all, of the input data for a particular swath grid cell. Fill data may appear in the product in any of the following circumstances:

- One of Science Production Software (SPS) executables that generate the SMAP L2_SM_A Product is unable to calculate a particular science or engineering data value. The algorithm encounters an error. The error disables generation of valid output. The SPS reports a fill value instead.
- Some of the required science or engineering algorithmic input are missing. Data over the region that contributes to particular grid cell may appear in only some of the input data streams. Since data are valuable, the L2_SM_A Product records any outcome that can be calculated with the available input. Missing data appear as fill values.
- Non-essential information is missing from the input data stream. The lack of nonessential information does not impair the algorithm from generating needed output. The missing data appear as fill values.
- Fill values appear in the input radar L1C_S0_Hires product. If only some of the input that contributes to a particular grid cell is fill data, the L2_SM_A SPS will most likely be able to generate some output. However, some portion of the L2_SM_A output for that grid cell may appear as fill values.

SMAP data products employ a specific set of data values to connote that an element is fill. The selected values that represent fill are dependent on the data type. Table 7 lists the values that represent fill in SMAP products based on data type:

Table 7: Fill Values in SMAP Data Products

Type	Value	Pattern
Float32, Float64	-9999.00	Large, negative number
Signed8, NormSigned8	-127	Type minimum + 1
Signed16, NormSigned16	-9999	Type minimum + 1
Signed24	-8388607	Type minimum + 1
Signed32	-9999	Type minimum + 1
Signed64	-9999	Type minimum + 1
Unsigned8	254	Type maximum - 1
Unsigned16	65534	Type maximum - 1
Unsigned24	16777214	Type maximum - 1
Unsigned32	4294967294	Type maximum - 1
Unsigned64	18446744073709551614	Type maximum - 1
FixedLenString, VarLenString	NA	Not available

No valid value in the L2_SM_A product is equal to the values that represent fill. If any exceptions should exist in the future, the L2_SM_A content will provide a means for users to discern between elements that contain fill and elements that contain genuine data values. This document will also contain a description of the method used to ascertain which elements are fill and which elements are genuine.

The L2_SM_A product records gaps when entire frames within the time span of a particular data granule do not appear. Gaps can occur under one of two conditions:

- One or more complete frames of data are missing from all data streams.
- The subset of input data that is available for a particular frame is not sufficient to process any frame output.

The Level L2_SM_A Product records gaps in the product level metadata. The following conditions will indicate that no gaps appear in the data product:

- Only one instance of the attributes *Extent/rangeBeginningDateTime* and *Extent/rangeEndingDateTime* will appear in the product metadata.
- The character string stored in metadata element *Extent/rangeBeginningDateTime* will match the character string stored in metadata element *OrbitMeasuredLocation/halfOrbitStartDateTime*.
- The character string stored in metadata element *Extent/rangeEndingDateTime* will match the character string stored in metadata element *OrbitMeasuredLocation/halfOrbitStopDateTime*.

One of two conditions will indicate that gaps appear in the data product:

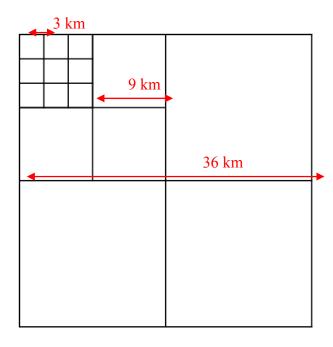
- The time period covered between *Extent/rangeBeginningDateTime* and *Extent/RangeEndingDateTime* does not cover the entire half orbit as specified in *OrbitMeasuredLocation/halfOrbitStartDateTime* and *OrbitMeasuredLocation/halfOrbitStartDateTime*.
- More than one pair of Extent/rangeBeginningDateTime and Extent/rangeEndingDateTime appears in the data product. Time periods within the time span of the half orbit that do not fall within the sets of

Extent/rangeBeginningDateTime and Extent/rangeEndingDateTime constitute data gaps.

2.6 Flexible Data Design

HDF5 format gives the SMAP Level Products a high degree of flexibility. This flexibility in turn gives SMAP end product users the capability to write software that does not need to be modified to accommodate unforeseeable changes in the SMAP products. Since changes to the products are certain to take place over the life of the SMAP mission, users are encouraged to use software techniques that take advantage of some of the features in HDF5.

For example, users can write a product reader that selects only those product data elements they wish to read from an SMAP Level Product file. With the appropriate design, this software will not need to change, regardless of the number, the size, or the order of the current data product entries. Indeed, the only changes users need to implement would take place if they should choose to read a newly defined data element after a product upgrade.


For those users who wish to extract a specific subset of the data from an SMAP Product, the HDF5 routines H5Dopen and H5Dread (h5dopen_f and h5dread_f in FORTRAN) are very useful. H5Dopen requires two input parameters, the first is an HDF5 file/group identifier, the second is a character string that contains the name of a Dataset. H5Dopen returns the identifier for the specified Dataset in the product file. HDF5 routine H5Dread then uses the Dataset identifier to fetch the contents. H5Dread places the contents of the Dataset in a specified output variable.

Once the data element is located and read, users can generate standardized code that reads the metadata associated with each element. Users of the SMAP Level Products should employ the same methods to read metadata and standard data elements.

3 EASE2 Grid

The data in the SMAP L2_SM_A product are presented on a global cylindrical projection. The projection is based on NSIDC's 3-km EASE2 Grid specification for SMAP.

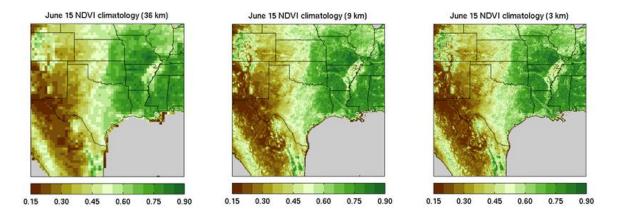

The EASE2 Grid has a flexible formulation. By adjusting one scaling parameter it is possible to generate a family of multi-resolution grids that "nest" within one another. The nesting can be made "perfect" in that smaller grid cells can be tessellated to form larger grid cells, as shown in Fig. 2.

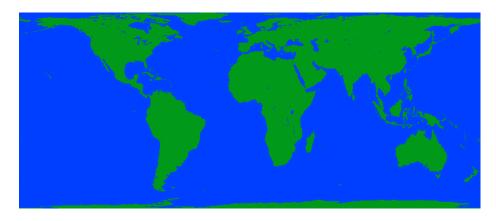
Figure 2: Perfect nesting in EASE2 Grid – smaller grid cells can be tessellated to form larger grid cells.

This feature of perfect nesting provides SMAP data products with a convenient common projection for both high-resolution radar observations and low-resolution radiometer observations, as well as their derived geophysical products.

A nominal EASE2 grid dimension of 36 km has been selected for the L1C_TB and L2/3_SM_P products. This spatial scale is close to the 40-km resolution of the radiometer footprint and it scales conveniently with the 3 km and 9 km grid dimensions that have been selected for the radar (L2/3_SM_A) and combined radar/radiometer (L2/3_SM_A/P) soil moisture products, respectively. A comparison of EASE2 Grid at these three grid resolutions is shown in Fig. 3.

Figure 3: Example of ancillary NDVI climatology data displayed on the SMAP 36-km, 9-km, and 3-km grids.

The three projections (global, north polar and south polar) used by SMAP products are assigned with the following three-letter designators. These projections are shown in Fig. 4.


Global: M[36,09,03]
North Polar: N[36,09,03]
South Polar: S[36,09,03]

(a) Northern Hemisphere on EASE2-Grid projection

(b) Southern Hemisphere on EASE2-Grid projection

(c) Global EASE2-Grid projection

Figure 4: EASE2 Grid examples: (a) N36, (b) S36, and (c) M36.

The data in the SMAP L2_SM_A product are available on the global 3 km projection (M03). All elements in L2_SM_A are stored as HDF5 Datasets. Each dataset belongs to an HDF5 Group. Only cells that are covered by the swath are written in the product.

4 PRODUCT DEFINITION

4.1 Overview

The SMAP L2_SM_A product is derived from the SMAP L1C_S0_Hires product, which provides swath-gridded data of SMAP radar observations at 1 km resolution. To generate the standard L2_SM_A product the processing software ingests the 6:00 am descending half-orbit granules of the L1C_S0_Hires product data (data from the 6:00 pm ascending half-orbit granules are not currently considered by the L2_SM_A processing software). The ingested data are then inspected for retrievability criteria according to input data quality, ancillary data availability, and land cover conditions. When retrievability criteria are met, the software invokes the baseline retrieval algorithm to generate soil moisture retrieval. Only cells that are covered by the swath for a given projection are written in the product.

4.2 Product Names

L2 SM A data product file names conform to the following convention:

SMAP_L2_SM_A_[Orbit Number]_[A|D]_[First Date/Time Stamp]_[Composite Release ID]_[Product Counter].[extension]

Example: SMAP L2 SM A 00934 D 20141225T074951 R00400 002.h5

Orbit Number A five-digit sequential number of the orbit flown by the SMAP spacecraft when the data was acquired. Orbit 0 begins at launch.

Half Orbit 'A' for 6:00 pm ascending pass and 'D' for 6:00 am descending

Designator pass.

First Date/Time

Stamp

Date/time stamp in Universal Coordinated Time (UTC) of the first data element that appears in the product. The stamp conforms to the

YYYYMMDDThhmmss convention

Composite Release ID

An ID that incorporates changes to any processing condition that might impact product results. The Composite Release ID contains three other shorter ID's: [R][Launch Indicator][Major ID][Minor ID]. The Launch Indicator distinguishes between pre-launch or preinstrument commissioned data. ('0' for simulated or preliminary observations whereas '1' for observations at or after the time of instrument commissioning) A two-digit Major ID indicates major releases due to changes in algorithm or processing approach. A two-digit Minor ID indicates minor releases due to changes not considered by a change in Major ID.

Product A three-digit counter that tracks the number of times that a Counter

particular product type for a specific half orbit has been generated.

Extension '.h5' for science product data and '.ga' for OA product data.

4.3 Volume

The following estimates represent the combined data volume of metadata and the actual science data of the product:

Daily volume: 1.3 GBytes

Yearly volume: 480 GBytes

4.4 L2_SM_A Product Metadata

The metadata elements in the L2 SM A product appear in two forms. One form appears in one or more Attributes within the Metadata Group. Combined, those Attributes contain a complete representation of the product metadata. The content conforms to the ISO 19115-2 models in ISO 19139 compliant XML.

The second form of the metadata appears in a set of HDF5 groups under the Metadata Group. Each of these HDF5 Groups represents one of the major classes in the ISO structure. These groups contain a set of HDF5 attributes. Each HDF5 Attribute set represents a specific ISO attribute of the associated ISO class. Although this representation inherits design from the ISO model, it does not completely conform to the model. In many cases, the names of the HDF5 Attributes match those used in the ISO model. In some situations, names were changed to provide greater clarity to SMAP users who are not familiar with the ISO model. Furthermore, to ease metadata searches, the structure of Groups within Groups was limited to four levels.

Table 8 describes the subgroups of the Metadata group, and the attributes within each group. The first column of table 8 specifies a major class in the ISO 19115 metadata model. The second column provides the name of the HDF5 Group under "/Metadata" where attributes associated with the corresponding class will appear. The third column lists the names of the subgroups and attributes where specific metadata values appear. The fourth column provides valid values for each element. Constant values appear with no diacritical marks. Variable values are encapsulated by carats \Leftrightarrow . All of the metadata elements that appear in table 8 should also appear in every L2 SM A Product file.

Table 8: Granule Level Metadata in the L2_SM_A Product

Representative ISO Class	SMAP HDF5 Metadata Subgroup	SMAP HDF5 Sub-path	SMAP HDF5 Attribute	Definition
			antennaRotationRate	<the (rpm)="" antenna="" in="" minute="" per="" rate="" revolution="" rotation=""></the>
			description	The SMAP observatory houses an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath. The bus is a 3 axis stabilized spacecraft that provides momentum compensation for the rotating antenna.
			identifier	SMAP
		platform		
			description	The SMAP radar instrument employs an L-band conically scanned system and SAR processing techniques to achieve moderate resolution (1 km) backscatter measurements over a very wide 1000 km swath.
			identifier	SMAP SAR
		radar,	type	L-band Synthetic Aperture Radar
		radiometer		
			edition	<the available="" document,="" edition="" general="" if="" of="" public.="" publication="" reference="" the="" to=""></the>
			publicationDate	<the available="" date="" document,="" if="" of="" publication="" reference="" the="" to<br="">the general public.></the>
MD_AcquisitionInformat	AcquisitionInfor	platformDocument, radarDocument,	title	<the available="" document,="" general="" if="" of="" public.="" publication="" reference="" the="" title="" to=""></the>
ion	mation	radiometerDocument		
			evaluationMethodType	<the "directinternal"="" data="" evaluation="" means<br="" method.="" of="" qaulity="" type="">the method of evaluating the quality of a dataset based on inspection of items within the dataset, where all data required is internal to the dataset being evaluated.></the>
			measureDescription	<the consistency="" description="" domain="" measurement.="" of="" the=""></the>
			nameOfMeasure	<pre><the measurements="" name="" of="" the=""></the></pre>
			unitOfMeasure	Percent
DQ_DataQuality	DataQuality	DomainConsistency	value	<a 0="" 100="" and="" between="" measure="">

	1	T	T	T
			evaluationMethodType	<the "directinternal"="" data="" evaluation="" means<br="" method.="" of="" qaulity="" type="">the method of evaluating the quality of a dataset based on inspection of items within the dataset, where all data required is internal to the dataset being evaluated.></the>
			measureDescription	<the completeness="" description="" measurement.="" of="" omission="" the=""></the>
			nameOfMeasure	Percent of Missing Data
			unitOfMeasure	Percent
			value	<a 0="" 100="" and="" between="" measure="">
		CompletenessOmission		
			scope	
			CompositeReleaseID	<smap associated="" composite="" data="" id="" product="" release="" this="" with=""></smap>
			ECSVersionID	<identifier (eosdis="" 001="" 999="" core="" delivered="" ecs="" from="" major="" runs="" specifies="" system).="" that="" to="" value="" version=""></identifier>
			SMAPShortName	<the data="" mission="" name="" of="" product="" product.="" short="" smap="" this=""></the>
			UUID	
			abstract	
			characterSet	utf8
			creationDate	<date created="" data="" file="" product="" this="" was="" when=""></date>
			credit	<identify and="" authorship="" automates="" data="" generation="" institutional="" its="" of="" product="" production.="" software="" system="" that="" the=""></identify>
			fileName	<the data="" file.="" name="" of="" product="" this=""></the>
			language	eng
			originatorOrganizationN ame	Jet Propulsion Laboratory
			otherCitationDetails	<the description="" for<br="" generation="" of="" product="" software="" state="" the="">this data product file.></the>
			purpose	<the data="" description="" file.="" of="" product="" purpose="" the="" this=""></the>
			shortName	<the 8="" characters.="" data="" ecs="" in="" name="" of="" product="" short="" this=""></the>
			spatialRepresentationTyp e	grid
DS_Dataset/MD_DataIde	DatasetIdentificat		status	onGoing
ntification	ion		topicCategory	geoscientificInformation

			1	<the and="" data<="" description="" extents="" of="" p="" spatial="" temporal="" the=""></the>
			description	product.> <the boundary="" data="" eastern="" extent="" most="" of="" p="" product<="" spatial="" the=""></the>
				covers (Longitude measure between -180 degrees and 180
			eastBoundLongitude	degrees)>
				<the boundary="" data="" extent="" most="" northern="" of="" p="" product<="" spatial="" the=""></the>
			northBoundLatitude	covers (Latitude measure between -90 degrees and 90 degrees)>
			rangeBeginningDateTim	<character and="" data<="" date="" indicates="" initial="" of="" p="" string="" that="" the="" time=""></character>
			e	element in the product>
			rangeEndingDateTime	<character and="" data="" date="" element="" final="" in="" indicates="" of="" product.="" string="" that="" the="" time=""></character>
			southBoundLatitude	<the (latitude="" -90="" 90="" and="" between="" boundary="" covers="" data="" degrees="" degrees)="" extent="" measure="" most="" of="" product="" southern="" spatial="" the=""></the>
EX Extent	Extent		westBoundLongitude	<the (longitude="" -180="" 180="" and="" between="" boundary="" covers="" data="" degrees="" degrees)="" extent="" measure="" most="" of="" product="" spatial="" the="" western=""></the>
LA_LACIN	Extent		westboundLongitude	degrees)
			edition	<pre><the definition="" document="" grid="" of="" the="" version=""></the></pre>
			publicationDate	<the date="" definition="" document="" grid="" of="" publication="" the=""></the>
			title	<the definition="" document="" grid="" of="" the="" title=""></the>
		GridDefinitionDocument		
			description	<the applied="" data="" decription="" definition="" for="" generation="" grid="" of="" product="" the=""></the>
			identifier	<the data="" definition="" grid="" identifying="" name="" of="" product="" short="" the="" this=""></the>
		GridDefinition		
			cellGeometry	<indication area="" as="" data="" grid="" of="" or="" point=""></indication>
			controlPointAvailability	<indication (0="" 1="" and="" are="" available="" available)="" control="" implies="" not="" of="" or="" points="" whether=""></indication>
			dimensionSize	<the are="" arrays="" data="" dimension="" file="" in="" of="" organized="" product="" projection="" size="" specific="" the="" this=""></the>
			georeferencedParameters	<the conversion="" for="" geographic="" informtaion="" interest="" location="" map="" of="" parameters="" projection="" the="" to="" used=""></the>
			numberOfDimensions	<the are="" arrays="" data="" dimensions="" file="" in="" number="" of="" organized="" product="" projection="" specific="" the="" this=""></the>
MD GridSpatialReprese	GridSpatialRepre		orientationParameterAva ilability	<indication are="" available<br="" not="" of="" or="" orientation="" parameters="" whether="">(0 implies not available and 1 implies available)></indication>
ntation	sentation		resolution	<the data="" each="" in="" kilometer="" point="" represents,="" resolution="" spatial=""></the>

			transformationParameter Availability	<the (0="" 1="" and="" available="" available)="" exists="" for="" implies="" indication="" not="" of="" or="" parameters="" the="" transformation="" whether=""></the>
		CHANGE_INDEX_REF_S	creationDate	<date ancillary="" corresponding="" created="" file="" input="" the="" was="" when=""></date>
		0, CROP_TYPE, CUBESET_CONFIG, DEM, DEMSTD,	description	Would be nice if all the datacube metadata names went in a Metadata/Lineage/DataCube/ <cubefile>/… structure, so that user would know that these funny-named files are all data cube files. Unfortunately that breaks the "no more than 4 levels deep" rule for the HDF5 representations.</cubefile>
		Datacube_BareSoil, Datacube ClosedShrub,	fileName	<the ancillary="" file.="" input="" name="" of="" the=""></the>
		Datacube_Corn,	version	<the ancillary="" file.="" input="" number="" of="" the="" versioni=""></the>
		Datacube_CropMix, Datacube DeciduousBroadl		
		eaf, Datacube DeciduousNeedl		
		e,		
		Datacube_EvergreenBroadl eaf,		
		Datacube_EvergreenNeedle		
		Datacube_Grass,		
		Datacube_MixedForest, Datacube_OpenShrub,		
		Datacube_Savanna, Datacube Soybean,		
		Datacube_Wetland,		
		Datacube_Wheat, Datacube WoodySavanna,		
		EASEGRID_LAT_M, EASEGRID_LON_M,		
		EPS_TO_MV_DOBSON,		
		EPS_TO_MV_MIRONOV, FT PARAMETERS,		
		GBTS,		
		INDEX_2D1D, InputConfiguration,		
		LANDCOVER_CLASS, MetadataConfiguration,		
LI Lineage/LE Source	Lineage	NDVI,		

		SNOW, SOIL_TEXTURE_BULK,		
		SOIL_TEXTURE_CLAY, SOIL_TEXTURE_SAND, SURFACE_ROUGHNESS,		
		TSURF, URBAN_FRACTION,		
		WATER_FRACTION		
			DOI	
			creationDate	<date corresponding="" created="" file="" input="" product="" the="" was="" when=""></date>
			description	<description data="" each="" files="" generate="" input="" of="" product.="" the="" this="" to="" used=""></description>
			fileName	<the corresponding="" file.="" input="" name="" of="" product="" the=""></the>
			identifier	<the associated="" data="" input="" name="" product.="" science="" short="" smap="" the="" with=""></the>
			resolution	<the data="" each="" in="" kilometer="" point="" represents,="" resolution="" spatial=""></the>
			version	<the associated="" composite="" data="" id="" input="" product.="" smap="" the="" version="" with=""></the>
		L1C_S0_HiRes		
SD_OrbitMeasuredLocat ion	OrbitMeasuredLo cation		argumentOfPerigee	<the angle="" between="" in="" of="" orbit="" plane="" point<br="" satellite="" smap="" the="">of perigee and ascending node. The angle is measured in the direction of spacecraft motion.></the>

ts.
aken.
class.
de
e
nmost
e
nmost
S
7
ules.
torial
ts.
ribe
at the
zero
uinox
ss surface transfer at the contract of the con

		semiN	MajorAxis	<the axis="" length="" of="" orbit.="" semi-major="" spacecraft="" the=""></the>
		ATBD	DDate	<time atbd="" date="" of="" release="" specifies="" stamp="" that="" the=""></time>
		ATBD	OTitle	<the atbd="" of="" the="" title=""></the>
		ATBD	OVersion	<version atbd.="" for="" identifier="" the=""></version>
		Dynar Thresh	micWaterDetection hold	
		Mount erThre	tainousTerrainUpp eshold	<the algorithm="" in="" scientific="" software="" the="" threshold="" used="" value=""></the>
		Perma	nentWaterFractionUp	pperThreshold
		Retrie	valTimeSeriesNumbe	rThreshold
		SWVe	ersionID	<a 001="" 999="" from="" identifier="" runs="" software="" that="" to="" version="">
		Urban	FractionThreshold	
		VWC	UpperThreshold	<the algorithm="" in="" scientific="" software="" the="" threshold="" used="" value=""></the>
		algorit	thmDate	<pre><date algorithm.="" associated="" current="" of="" the="" version="" with=""></date></pre>
		algorit	thmDescription	<descriptive about="" algorithm(s)="" data="" for="" generation="" in="" product="" product.="" software="" text="" the="" this=""></descriptive>
		algorit	thmSelection	<the algorithm(s)="" applied="" data="" geenrate="" product.="" this="" to=""></the>
		algorit	thmTitle	<the algorithm="" data="" for="" name="" of="" product.="" representative="" the="" this=""></the>
		algorit	thmVersionID	<identifier 001="" 999="" algorithm="" current="" from="" runs="" specifies="" that="" the="" to="" value="" version.=""></identifier>
		docum	nentDate	<release date="" description="" document.="" for="" software="" the=""></release>
		docum	nentVersion	<version description="" document.="" for="" identifier="" software="" the=""></version>
		docum	nentation	
		epoch.	JulianDate	<julian 2451545="" date="" epoch="" j2000,="" of="" the=""></julian>
		epoch	UTCDateTime	<utc 2000-01-01t11:58:55.816z="" date="" epoch="" j2000,="" of="" the="" time=""></utc>
		identif	fier	<name data="" for="" generation="" of="" product="" software="" the="" this=""></name>
		param	eterVersionID	<identifier current="" of="" processing<br="" specifies="" that="" the="" version="">parameters. Value runs from 001 to 999.></identifier>
		proces	ssDescription	<short by="" concept="" data="" description="" generation="" of="" processing="" product="" software.="" the=""></short>
		proces	ssor	<name facility="" generation="" of="" product="" the=""></name>
		softwa	areDate	
LI Lineage/LE ProcessS		softwa	areTitle	<the facility="" generation="" of="" product="" the="" title=""></the>
tep	ProcessStep	stepDa	ateTime	< A character string that specifies the date and the time when the

			product was generated.>
		timeVariableEpoch	<the epoch="" for="" mission="" of="" smap="" the="" time="" variable=""></the>
		SMAPShortName	<the data="" mission="" name="" of="" product="" product.="" short="" smap="" this=""></the>
		characterSet	utf8
		edition	<edition document="" for="" identifier="" product="" specification="" the=""></edition>
		language	eng
DS_Series/MD_DataIden	ProductSpecificat	publicationDate	<pre><date document="" of="" product="" publication="" specification="" the=""></date></pre>
tification	ionDocument	title	<pre><the document="" of="" product="" specification="" the="" title=""></the></pre>
		MissingSamples	<the data="" in="" missing="" number="" of="" products="" samples="" this=""></the>
		OutOfBoundsSamples	<the are="" boundary="" exceeding="" number="" of="" predefined="" samples="" that="" the=""></the>
		QAPercentOutOfBounds Data	<percent are="" boundary="" data="" exceeding="" in="" of="" predefined="" product="" respect="" samples="" that="" the="" this="" tot="" total="" with=""></percent>
DQ_DataQuality	QA	TotalSamples	<the all="" data="" in="" number="" of="" product="" samples="" this=""></the>
		abstract	An ASCII product that contains statistical information on data product results. These statistics enable data producers and users to assess the quality of the data in the data product granule.
DS Dataset/MD DataIde	QADatasetIdentif	creationDate	<the date="" generated.="" product="" qa="" that="" the="" was=""></the>
ntification	ication	fileName	<the name="" of="" product.="" qa=""></the>
		CompositeReleaseID	<smap composite="" data="" generate="" id="" identifies="" product="" release="" that="" the="" this="" to="" used=""></smap>
		ECSVersionID	<identifier 001="" 999="" delivered="" ecs.="" from="" major="" runs="" specifies="" that="" to="" value="" version=""></identifier>
		abstract	
		characterSet	utf8
		credit	<identify authorship="" generation<br="" institutional="" of="" product="" the="">software and the data system that automates its production.></identify>
		format	HDF5
		formatVersion	<the for="" generation="" hdf5="" library="" of="" product="" the="" used="" version=""></the>
DS Series/MD DataIden	SeriesIdentificati	identifier_product_DOI	<pre><digital 1c="" for="" hires="" identifier="" level="" object="" product="" s0="" the=""></digital></pre>
tification	on	language	eng

longName	The long name of this data are dust (up to 90 sharestors long)
	<the (up="" 80="" characters="" data="" long="" long)="" name="" of="" product="" this="" to=""></the>
maintenanceAndUpdateF	
requency	asNeeded
maintenanceDate	<specifies a="" anticipated="" be="" date="" might="" next="" product="" the="" this="" to="" update="" when=""></specifies>
mission	Soil Moisture Active Passive (SMAP)
otherCitationDetails	<the description="" for<br="" generation="" of="" product="" software="" state="" the="">this data product file.></the>
pointOfContact	<the daac="" data="" distributed="" from.="" is="" name="" of="" product="" the="" this=""></the>
purpose	<the data="" description="" file.="" of="" product="" purpose="" the="" this=""></the>
resourceProviderOrganiz ationName	National Aeronautics and Space Administration
revisionDate	Oate and time of the software release that was used to generate this data product.>
shortName	<the 8="" characters.="" data="" ecs="" in="" name="" of="" product="" short="" this=""></the>
spatialRepresentationTyp e	grid
status	onGoing
topicCategory	geoscientificInformation

¹ The metadata will allocate a group for each input data set that requires provenance tracking. The most critical ones listed in this document are those that are likely to vary from one orbit granule to the next. The metadata will track and list additional files for user information.

Note: The final ISO metadata model for this product is still TBD.

4.5 Data Structure

Soil Moisture Retrieval Data Group

Element	Shape	Concept	Bytes	Signe d	Unit	Min	Max	Comment
sigma0_qual_flag_hh	EASEGridCell_Array	bit flag	4	NA	NA	NA	NA	Representative quality flags of horizontal polarization sigma0 measures in the grid cell
sigma0_qual_flag_vv	EASEGridCell_Array	bit flag	4	NA	NA	NA	NA	Representative quality flags of vertical polarization sigma0 measures in the grid cell
sigma0_qual_flag_xpol	EASEGridCell_Array	bit flag	4	NA	NA	NA	NA	Representative quality flags of cross polarized sigma0 measures in the grid cell
retrieval_qual_flag_cube	EASEGridCell_Array	bit flag	2	NA	NA	NA	NA	Bit flags that record the conditions and the quality of the soil moisture and freeze-thaw retrieval for the grid cell.
retrieval_qual_flag_kvz	EASEGridCell_Array	bit flag	2	NA	NA	NA	NA	Bit flags that record the conditions and the quality of the soil moisture and freeze-thaw retrieval for the grid cell.
retrieval_qual_flag_wagner	EASEGridCell_Array	bit flag	2	NA	NA	NA	NA	Bit flags that record the conditions and the quality of the soil moisture and freeze-thaw retrieval for the grid cell.
surface_flag	EASEGridCell_Array	bit flag	2	NA	NA	NA	NA	Bit flags that record ambient surface conditions for the grid cell
EASE_row_index	EASEGridCell_Array	integer	2	false	count	0	65535	The row index of the 3 km EASE grid cell that contains the associated data.
EASE_column_index	EASEGridCell_Array	integer	2	false	count	0	65535	The column index of the 3 km EASE grid cell that contains the associated data.

num_input_sigma0s_hh	EASEGridCell_Array	integer	2	false	count	0	100	Total number of horizontal polarization sigma0s from the Level 1C product that were used for retrievals in an EASE grid cell.
num_input_sigma0s_vv	EASEGridCell_Array	integer	2	false	count	0	100	Total number of vertical polarization sigma0s from the Level 1C product that were used for retrievals in an EASE grid cell.
num_input_sigma0s_xpol	EASEGridCell_Array	integer	2	false	count	0	100	Total number of cross polarized sigma0s from the Level 1C product that were used for retrievals in an EASE grid cell.
num_time_series	EASEGridCell_Array	integer	1	false	count	0	255	The number of time-series data used to retrieve soil moisture in the corresponding grid cell.
latitude	EASEGridCell_Array	real	4	NA	degrees _north	-90.0	90.0	Average in latitude of the 1km Level 1 cells that contribute to 3km EASE grid cell. (temporary)
longitude	EASEGridCell_Array	real	4	NA	degrees _east	-180.0	180.0	Average in longitude of the 1km Level 1 cells that contribute to the 3km EASE grid cell. (temporary)
distance_from_nadir	EASEGridCell_Array	real	4	NA	meters	0.0	500000.0	The distance from the center of the 3 km EASE grid cell to the spacecraft's sub-nadir track on the Earth's surface.
spacecraft_overpass_time_seconds	EASEGridCell_Array	real	8	NA	seconds	0.00000	999999.9	Number of seconds since a specified epoch that represents the spacecraft overpass relative to ground swath.
soil_moisture_snapshot	EASEGridCell_Array	real	4	NA	cm ³ /cm ³	0.02	0.5	Representative soil moisture measurement for the Earth based grid cell, retrieved using the snapshot algorithm

soil_moisture_snapshot_DVZ	EASEGridCell_Array	real	4	NA	cm ³ /cm ³	0.02	0.5	Retrieved soil moisture for the Earth based grid cell, retrieved using the Dubois/van Zyl snapshot algorithm
soil_moisture_snapshot_shi	EASEGridCell_Array	real	4	NA	cm ³ /cm ³	0.02	0.5	Retrieved soil moisture for the Earth based grid cell, retrieved using the Shi snapshot algiorithm
soil_moisture_time_series	EASEGridCell_Array	real	4	NA	cm ³ /cm ³	0.02	0.5	Retrieved soil moisture for the Earth based grid cell retrieved using the time series algorithm
soil_moisture_kvz	EASEGridCell_Array	real	4	NA	cm ³ /cm ³	0.02	0.5	Retrieved soil moisture for the Earth based grid cell retrieved using the Kim/van Zyl time series algorithm
soil_moisture_wagner	EASEGridCell_Array	real	4	NA	cm ³ /cm ³	0.0	2.0	Retrieved normalized change in soil moisture.
soil_moisture_error	EASEGridCell_Array	real	4	NA	cm ³ /cm ³	0.0	0.2	Net uncertainty measure of soil moisture measure for the Earth based grid cell Calculation method is TBD. May be replaced by other quality indicators.
radar_vegetation_index	EASEGridCell_Array	real	4	NA		0.0	2.0	Vegetation index derived from radar backscatter
bare_soil_roughness_retrieved	EASEGridCell_Array	real	4	NA	meters	0.0	0.1	Bare soil roughness measure retrieved using the active soil moisture algorithm.
spacecraft_overpass_time_utc	EASEGridCell_Array	string	24	NA	NA	NA	NA	Time of spacecraft overpass relative to ground swath in UTC.

Radar Data Group

Element	Shape	Concept	Bytes	Signed	Unit	Min	Max	Comment
cell_radar_mode_flag	EASEGridCell_Array	bit flag	2	NA	NA	NA	NA	Bit flags that specify modes or conditions of radar instrument operation that impact the data represented in the Level 2 SM A Product.
earth_boresight_azimuth_fore	EASEGridCell_Array	real	4	NA	degrees	0.0	360.0	Mean direction of the projection of the antenna boresight vector on the Earth's surface relative to North for forward looking sigma0s within 3 km cell Level 1C azimuth is based on instrument coordinate system, not geographical North
earth_boresight_azimuth_aft	EASEGridCell_Array	real	4	NA	degrees	0.0	360.0	Mean direction of the projection of the antenna boresight vector on the Earth's surface relative to North for aft looking sigma0s within 3 km cell Level 1C azimuth is based on instrument coordinate system, not geographical North
altitude_std_dev	EASEGridCell_Array	real	4	NA	meters	0.0	1000.0	The standard deviation of the Earth surface elevation within the 3km cell
sigma0_hh_mean	EASEGridCell_Array	real	4	NA	normalized	-0.01	10.0	Mean of 1 km instrument resolution HH-pol Sigma0 in the 3 km Earth grid cell.
sigma0_vv_mean	EASEGridCell_Array	real	4	NA	normalized	-0.01	10.0	Mean of 1 km instrument resolution VV-pol Sigma0 in the 3 km Earth grid cell.
sigma0_xpol_mean	EASEGridCell_Array	real	4	NA	normalized	-0.01	10.0	Mean of 1 km instrument resolution crosspol Sigma0 in the 3 km Earth grid cell.
sigma0_hh_std_dev	EASEGridCell_Array	real	4	NA	normalized	0.0	5.0	Standard deviation of 1 km instrument resolution HH-pol Sigma0 in the 3 km Earth grid cell.
sigma0_vv_std_dev	EASEGridCell_Array	real	4	NA	normalized	0.0	5.0	Standard deviation of 1 km instrument resolution VV-pol Sigma0 in the 3 km Earth grid cell.

sigma0_xpol_std_dev	EASEGridCell_Array	real	4	NA	normalized	0.0	5.0	Standard deviation of 1 km instrument resolution cross-pol Sigma0 in the 3 km Earth grid cell.
kp_hh	EASEGridCell_Array	real	4	NA	normalized	0.0	1.0	Overall error measure for HH-pol Sigma0 within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.
kp_vv	EASEGridCell_Array	real	4	NA	normalized	0.0	1.0	Overall error measure for HH-pol Sigma0 within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.
kp_xpol	EASEGridCell_Array	real	4	NA	normalized	0.0	1.0	Overall error measure for HH-pol Sigma0 within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.
sigma0_hh_mean_fore	EASEGridCell_Array	real	4	NA	normalized	-0.01	10.0	Mean of forward looking 1 km instrument resolution HH-pol Sigma0 in the 3 km Earth grid cell.
sigma0_vv_mean_fore	EASEGridCell_Array	real	4	NA	normalized	-0.01	10.0	Mean of forward looking 1 km instrument resolution VV-pol Sigma0 in the 3 km Earth grid cell.
sigma0_xpol_mean_fore	EASEGridCell_Array	real	4	NA	normalized	-0.01	10.0	Mean of forward looking 1 km instrument resolution cross-pol Sigma0 in the 3 km Earth grid cell.
sigma0_hh_std_dev_fore	EASEGridCell_Array	real	4	NA	normalized	0.0	5.0	Standard deviation of forward looking 1 km instrument resolution HH-pol Sigma0 in the 3 km Earth grid cell.
sigma0_vv_std_dev_fore	EASEGridCell_Array	real	4	NA	normalized	0.0	5.0	Standard deviation of forward looking 1 km instrument resolution VV-pol Sigma0 in the 3 km Earth grid cell.
sigma0_xpol_std_dev_fore	EASEGridCell_Array	real	4	NA	normalized	0.0	5.0	Standard deviation of forward looking 1 km instrument resolution cross-pol Sigma0 in the 3 km Earth grid cell.
kp_hh_fore	EASEGridCell_Array	real	4	NA	normalized	0.0	1.0	Overall error measure for forward looking HH-pol Sigma0 within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination

								effects.
kp_vv_fore	EASEGridCell_Array	real	4	NA	normalized	0.0	1.0	Overall error measure for forward looking VV-pol Sigma0 within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.
kp_xpol_fore	EASEGridCell_Array	real	4	NA	normalized	0.0	1.0	Overall error measure for forward looking cross-pol Sigma0 within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.
sigma0_hh_mean_aft	EASEGridCell_Array	real	4	NA	normalized	-0.01	10.0	Mean of aft looking 1 km instrument resolution HH-pol Sigma0 in the 3 km Earth grid cell.
sigma0_vv_mean_aft	EASEGridCell_Array	real	4	NA	normalized	-0.01	10.0	Mean of aft looking 1 km instrument resolution VV-pol Sigma0 in the 3 km Earth grid cell.
sigma0_xpol_mean_aft	EASEGridCell_Array	real	4	NA	normalized	-0.01	10.0	Mean of aft looking 1 km instrument resolution cross-pol Sigma0 in the 3 km Earth grid cell.
sigma0_hh_std_dev_aft	EASEGridCell_Array	real	4	NA	normalized	0.0	5.0	Standard deviation of aft looking 1 km instrument resolution HH-pol Sigma0 in the 3 km Earth grid cell.
sigma0_vv_std_dev_aft	EASEGridCell_Array	real	4	NA	normalized	0.0	5.0	Standard deviation of aft looking 1 km instrument resolution VV-pol Sigma0 in the 3 km Earth grid cell.
sigma0_xpol_std_dev_aft	EASEGridCell_Array	real	4	NA	normalized	0.0	5.0	Standard deviation of aft looking 1 km instrument resolution cross-pol Sigma0 in the 3 km Earth grid cell.
kp_hh_aft	EASEGridCell_Array	real	4	NA	normalized	0.0	1.0	Overall error measure for aft looking HH-pol Sigma0 within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.
kp_vv_aft	EASEGridCell_Array	real	4	NA	normalized	0.0	1.0	Overall error measure for aft looking VV-pol Sigma0 within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

kp_xpol_aft	EASEGridCell_Array	real	4	NA	normalized	0.0	Overall error measure for aft looking cross-pol Sigma0 within the 3 km cell
							based on Level 1C kp values, includes
							calibration, RFI and contamination
							effects.

Ancillary Data Group

Element	Shape	Concept	Bytes	Signed	Unit	Min	Max	Comment
landcover_class	EASEGridCell_Array	enum	1	NA	NA	NA	NA	An enumerated type that specifies the predominant surface vegetation found in the grid cell.
surface_temperature	EASEGridCell_Array	real	4	NA	degrees Celsius	-50.0	60.0	Temperature at land surface based on ECMWF or NCEP.
normalized_difference_vegetation _index	EASEGridCell_Array	real	4	NA		-999999.9	999999.9	Normalized difference vegetation index. A measure of the green character of vegetation. (IR- Red)/(IR+Red)
vegetation_water_content_NDVI	EASEGridCell_Array	real	4	NA	kg/m**3	0.0	10.0	Representative measure of water in the vegetation within the 3 km grid cell based on the normalized difference vegetation index.
vegetation_water_content_RVI	EASEGridCell_Array	real	4	NA	kg/m**3	0.0	10.0	Representative

								measure of water in the vegetation within the 3 km grid cell
								based on the radar vegetation index.
bare_soil_roughness_tabular	EASEGridCell_Array	real	4	NA	meters	0.0	0.04	Measure of soil
								roughness from tabular
								source.
faraday_rotation_angle	EASEGridCell_Array	real	4	NA	degrees	-999999.9	999999.9	Faraday rotation angle
static_water_body_fraction	EASEGridCell_Array	real	4	NA		0.0	1.0	The fraction of the
								area of the 3 km grid
								cell that is covered by
								static water based on a
								Digital Elevation Man

4.6 Parameter Definitions

4.6.1 altitude std dev

The standard deviation of the Earth surface elevation within the 3km cell.

Precision: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: 0.0 Valid_max: 1000.0 Units: meters

4.6.2 bare_soil_roughness_retrieved

Bare soil roughness measure retrieved using the active soil moisture algorithm.

Type: Float32

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell_Array

Valid_min: '2014-10-31T00:00:00.000Z' **Valid_max:** '2030-12-31T23:59:60.999Z'

Units: n/a

4.6.3 bare_soil_roughness_tabular

Measure of soil roughness from tabular source.

Type: Float32

Group: Ancillary Data

Shape: EASEGridCell Array

 Valid_min:
 0.0

 Valid_max:
 0.04

 Units:
 meters

4.6.4 boresight_incidence_std_dev

Standard deviation of the angle between the antenna boresight vector and the normal to the Earth's surface based on the selected DEM.

Type: Float32

Group: Radar Uncertainty Data
Shape: EASEGridCell_Array

Valid_min: 0.0 Valid_max: 360.0 Units: degrees

4.6.5 **cell_radar_mode_flag**

Bit flags that specify modes or conditions of radar instrument operation that impact the data represented in the Level 2 SM A Product.

Type: uint16 (bit flag)

Group: Radar Uncertainty Data **Shape:** EASEGridCell_Array

Units: n/a

Bit	Bit Value and Interpretation
Position	
0	0 = Radar is operating in transmit-receive mode
U	1 = Radar is operating in receive only mode
1	Always clear (This bit is used to designate the nadir region in Level 1. It's
1	redundant in Level 2.)
2	0 = Cross polarized data are v-pol transmitted, h-pol received.
2	1 = Cross polarized data are h-pol transmitted, v-pol received.
	0 = Cross polarized data are consistent within this EASE grid cell.
3	1 = Cross polarized data are in transition, some are v-pol transmitted, h-pol
	received, others are h-pol transmitted, v-pol received.
4-15	Always clear (Bits 5 through 7 are reserved for Radar Level 1C use. Bits 8
4-13	through 15 are reserved for Level 2 use.)

4.6.6 distance_from_nadir

The distance from the center of the 3 km EASE grid cell to the spacecraft's sub-nadir track on the Earth's surface.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: 0.0 Valid_max: 360.0 Units: degrees

4.6.7 earth_boresight_azimuth_mean

Mean direction of the projection of the antenna boresight vector on the Earth's surface relative to North within 3 km cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: 0.0 Valid_max: 360.0 Units: degrees

4.6.8 **EASE_column_index**

EASE grid column index of cell on world grid in longitude direction.

Type: Float32

Group: Radar Uncertainty Data
Shape: EASEGridCell_Array

Valid_min: 0.0 Valid_max: 360.0 Units: degrees

4.6.9 **EASE row index**

EASE grid row index of cell on world grid in latitude direction.

Type: Float32

Group: Radar Uncertainty Data
Shape: EASEGridCell_Array

Valid_min: 0.0 Valid_max: 360.0 Units: degrees

4.6.10 **faraday_rotation_angle**

Faraday rotation angle.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: 0.0 Valid_max: 360.0 Units: degrees

4.6.11 **freeze thaw**

Boolean that indicates whether soil within cell is frozen or thawed. A value of zero value implies thawed, a value of 1 implies frozen.

Type: boolean uint8
Group: Ancillary Data

Shape: EASEGridCell Array

Valid_min: 0
Valid_max: 1
Units: n/a

4.6.12 **kp_hh**

Overall error measure for HH-pol $\sigma 0$ within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid max:

Units: dB

4.6.13 kp_hh_aft

Overall error measure for aft-looking HH-pol $\sigma 0$ within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid max:

Units: dB

4.6.14 **kp_hh_fore**

Overall error measure for fore-looking HH-pol $\sigma 0$ within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid_max:

Units: dB

4.6.15 **kp vv**

Overall error measure for VV-pol $\sigma 0$ within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid_max:

Units: dB

4.6.16 **kp vv aft**

Overall error measure for aft-looking VV-pol $\sigma 0$ within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid max:

Units: dB

4.6.17 **kp_vv_fore**

Overall error measure for fore-looking VV-pol $\sigma 0$ within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell_Array

Valid_min: Valid max:

Units: dB

4.6.18 **kp xpol**

Overall error measure for cross-pol $\sigma 0$ within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

Type: Float32

Group: Radar Uncertainty Data
Shape: EASEGridCell_Array

Valid_min: Valid max:

Units: dB

4.6.19 **kp_xpol_aft**

Overall error measure for aft-looking cross-pol $\sigma 0$ within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell_Array

Valid_min: Valid max:

Units: dB

4.6.20 **kp_xpol_fore**

Overall error measure for fore-looking cross-pol σ0 within the 3 km cell based on Level 1C kp values, includes calibration, RFI and contamination effects.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid max:

Units: dB

4.6.21 landcover class

An enumerated type that specifies the predominant surface vegetation found in the grid cell.

Type: enum uint16 **Ancillary Data Group:**

Shape: EASEGridCell Array

Valid_min: Valid_max:

Units: n/a

Value	Interpretation
0	Water
1	Evergreen needleleaf forest
2	Evergreen broadleaf forest
3	Deciduous needleleaf forest
4	Deciduous broadleaf forest
5	Mixed forest
6	Closed shrubland
7	Open shrubland
8	Woody savanna
9	Savanna
10	Grassland
11	Mixed forest
12	Closed shrubland
13	Open shrubland
14	Woody savanna
15	Savanna
16	Grassland
>16	TBD

4.6.22 **latitude**

Average latitude of the 1km Level 1 radar cells that contribute to each 3km EASE grid cell (temporary)

Type: Float32

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid_min: -90.0 Valid_max: 90.0 Units: degrees

4.6.23 longitude

Average longitude of the 1km Level 1 cells that contribute to each 3km EASE grid cell (temporary)

Type: Float32

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid_min: -180.0 Valid_max: 180.0 Units: degrees

4.6.24 normalized_difference_vegetation_index

Normalized difference vegetation index. A measure of the green character of vegetation. (IR-Red)/(IR+Red)

Type: Float32

Group: Ancillary Data

Shape: EASEGridCell Array

Valid_min: Valid_max:

Units: n/a

4.6.25 num_input_sigma0s_hh

Total number of horizontal polarization sigma0s from the Level 1C product that were used for retrievals in an EASE grid cell.

Type: uint16

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

 Valid_min:
 0

 Valid_max:
 100

 Units:
 n/a

4.6.26 num_input_sigma0s_vv

Total number of vertical polarization sigma0s from the Level 1C product that were used for retrievals in an EASE grid cell.

Type: uint16

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

 Valid_min:
 0

 Valid_max:
 100

 Units:
 n/a

4.6.27 num_input_sigma0s_xpol

Total number of cross-polarization sigma0s from the Level 1C product that were used for retrievals in an EASE grid cell.

Type: uint16

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

 Valid_min:
 0

 Valid_max:
 100

 Units:
 n/a

4.6.28 num_time_series

The number of time-series data used to retrieve soil moisture in the corresponding grid cell.

Type: uint8

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell_Array

Valid_min: 0
Valid_max: TBD
Units: n/a

4.6.29 radar vegetation index

Vegetation index derived from radar backscatter

Type: Float32

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid_min: 0.0

Valid max:

Units: n/a

4.6.30 retrieval_qual_flag

Bit flags that record the conditions and the quality of the soil moisture and freeze-thaw retrieval for the grid cell.

Type: bit flag uint16

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid_min: Valid_max:

Units: n/a

Name	Bit	Value	Interpretation
Tvaine	Position	(0:off, 1:on)	interpretation
Retrieval recommended flag	0	off	Use of the soil moisture value retrieved for this pixel is recommended.
		on	Use of soil moisture value retrieved for this pixel is not recommended.
Retrieval attempted flag	1	off	The algorithm attempted to retrieve soil moisture for this grid cell.
		on	The algorithm did not attempt to retrieve soil moisture for this grid cell.
Retrieval success flag	2	off	Retrieval for this algorithm was successfully executed or the algorithm was not attempted.
		on	The retrieval for this algorithm was attempted but failed.
Radar water body detection success flag	3	off	Radar water body detection ran successfully
		on	Unable to detect water bodies using retrieval techniques based on radar.
Freeze-thaw retrieval success flag	4	off	Freeze-thaw retrieval ran successfully
		on	Unable to ascertain freeze-thaw conditions
Radar vegetation index retrieval success flag	5	off	Radar vegetation index retrieval ran successfully
		on	Radar vegetation index retrieval unsuccessful

4.6.31 retrieval qual flag kvz

Bit flags that record the conditions and the quality of the soil moisture and freeze-thaw retrieval for the grid cell.

Type: bit flag uint16

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid_min:

Valid_max:

Units: n/a

Name	Bit Position	Value (0:off, 1:on)	Interpretation
Retrieval recommended flag	0	off	Use of the soil moisture value retrieved for
			this pixel is recommended.
		on	Use of soil moisture value retrieved for this
			pixel is not recommended.
Retrieval attempted flag	1	off	The algorithm attempted to retrieve soil
			moisture for this grid cell.
		on	The algorithm did not attempt to retrieve soil
			moisture for this grid cell.
Retrieval success flag	2	off	Retrieval for this algorithm was successfully
_			executed or the algorithm was not attempted.
		on	The retrieval for this algorithm was
			attempted but failed.
Radar water body detection success flag	3	off	Radar water body detection ran successfully
		on	Unable to detect water bodies using retrieval
			techniques based on radar.
Freeze-thaw retrieval success	4	off	Freeze-thaw retrieval ran successfully
flag			
		on	Unable to ascertain freeze-thaw conditons
Radar vegetation index	5	off	Radar vegetation index retrieval ran
retrieval success flag			successfully
		on	Radar vegetation index retrieval unsuccessful

4.6.32 retrieval_qual_flag_wagner

Bit flags that record the conditions and the quality of the soil moisture and freeze-thaw retrieval for the grid cell.

Type: bit flag uint16

Group: Soil Moisture Retrieval Data

EASEGridCell_Array Shape:

Valid_min: Valid_max:

Units: n/a

Name	Bit Position	Value (0:off, 1:on)	Interpretation
Retrieval recommended flag	0	off	Use of the soil moisture value retrieved for this pixel is recommended.
		on	Use of soil moisture value retrieved for this pixel is not recommended.
Retrieval attempted flag	1	off	The algorithm attempted to retrieve soil moisture for this grid cell.
		on	The algorithm did not attempt to retrieve soil moisture for this grid cell.
Retrieval success flag	2	off	Retrieval for this algorithm was successfully executed or the algorithm was not attempted.
		on	The retrieval for this algorithm was attempted but failed.

Radar water body detection success flag	3	off	Radar water body detection ran successfully
		on	Unable to detect water bodies using retrieval techniques based on radar.
Freeze-thaw retrieval success flag	4	off	Freeze-thaw retrieval ran successfully
		on	Unable to ascertain freeze-thaw conditions
Radar vegetation index retrieval success flag	5	off	Radar vegetation index retrieval ran successfully
		on	Radar vegetation index retrieval unsuccessful

4.6.33 sigma0_hh_mean

Mean of 1 km instrument resolution HH-pol $\sigma 0$ in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid_max:

Units: dB

4.6.34 sigma0_hh_mean_aft

Mean of 1 km instrument resolution aft-looking HH-pol σ 0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data
Shape: EASEGridCell_Array

Valid_min: Valid_max:

Units: dB

4.6.35 **sigma0_hh_mean_fore**

Mean of 1 km instrument resolution fore-looking HH-pol σ0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data
Shape: EASEGridCell_Array

Valid_min: Valid_max:

Units: dB

4.6.36 sigma0_hh_std_dev

Standard deviation of 1 km instrument resolution HH-pol σ 0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid_max:

Units: dB

4.6.37 sigma0_hh_std_dev_aft

Standard deviation of 1 km instrument resolution aft-looking HH-pol $\sigma 0$ in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid max:

Units: dB

4.6.38 **sigma0_hh_std_dev_fore**

Standard deviation of 1 km instrument resolution fore-looking HH-pol σ 0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid_max:

Units: dB

4.6.39 sigma0_xpol_mean

Mean of 1 km instrument resolution cross-pol σ0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data
Shape: EASEGridCell_Array

Valid_min: Valid_max:

Units: dB

4.6.40 sigma0_xpol_mean_aft

Mean of 1 km instrument resolution aft-looking cross-pol σ 0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid_max:

Units: dB

4.6.41 **sigma0_xpol_mean_fore**

Mean of 1 km instrument resolution fore-looking cross-pol σ0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min: Valid max:

Units: dB

4.6.42 sigma0_xpol_std_dev

Standard deviation of 1 km instrument resolution cross-pol of 0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell_Array

Valid_min: Valid_max:

Units: dB

4.6.43 sigma0_xpol_std_dev_aft

Standard deviation of 1 km instrument resolution aft-looking cross-pol σ 0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell_Array

Valid_min: Valid max:

Units: dB

4.6.44 sigma0 xpol std dev fore

Standard deviation of 1 km instrument resolution fore-looking cross-pol $\sigma 0$ in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data
Shape: EASEGridCell_Array

Valid_min: Valid max:

Units: dB

4.6.45 sigma0_qual_flag_hh

Representative quality flags of horizontal polarization sigma0 measures in the grid cell

Type: bit flag uint16

June 12, 2014 SMAP L2 Active Soil Moisture Product Specification Document

Soil Moisture Retrieval Data **Group:**

EASEGridCell_Array **Shape:**

Valid_min: Valid_max:

Units: n/a

Name	Bit Position	Value (0:off, 1:on)	Interpretation
Mean horizontal polarization quality flag	0	off	The mean of the forward looking and aft looking horizontal polarization sigma0s has acceptable quality.
		on	The mean of the forward looking and aft looking horizontal polarization sigma0s does not have acceptable quality.
Forward looking horizontal polarization quality flag	1	off	The forward looking horizontal polarization sigma0 has acceptable quality.
		on	The forward looking horizontal polarization sigma0 has questionable or poor quality.
Aft looking horizontal polarization quality flag	2	off	The aft looking horizontal polarization sigma0 has acceptable quality.
		on	The aft looking horizontal polarization sigma0 has questionable or poor quality.
Mean horizontal polarization range flag	3	off	The mean of the forward looking and aft looking horizontal polarization sigma0s falls within the expected range.
		on	The mean of the forward looking and aft looking horizontal polarization sigma0s is out of range.
Forward looking horizontal polarization range flag	4	off	The forward looking horizontal polarization sigma0 falls within the expected range.
6		on	The forward looking horizontal polarization sigma0 is out of range
Aft looking horizontal polarization range flag	5	off	The aft looking horizontal polarization sigma0 falls within the expected range.
		on	The aft looking horizontal polarization sigma0 is out of range.
Mean horizontal polarization RFI clean flag	6	off	Insignificant RFI detected in the mean of the forward looking and aft looking horizontal polarization sigma0s.
		on	RFI level is unsuitably high for the mean of the forward looking and aft looking horizontal polarization sigma0s.
Mean horizontal polarization RFI repair flag	7	off	Some components of the mean of the forward looking and aft looking horizontal polarization sigma0s are based on repairs for RFI contamination.
Ž		on	Unable to repair the mean of the forward looking and aft looking horizontal polarization sigma0s for RFI contamination.
Forward looking horizontal polarization RFI clean flag	8	off	Insignificant RFI detected in the forward looking horizontal polarization sigma0s.

		on	RFI level is unsuitably high for the forward looking horizontal polarization sigma0s.
Forward looking horizontal polarization RFI repair flag	9	off	At least one of the input forward looking horizontal polarization sigma0s is based on repairs for RFI contamination.
		on	Unable to repair the forward looking horizontal polarization sigma0s for RFI contamination.
Aft looking horizontal polarization RFI clean flag	10	off	Insignificant RFI detected in the aft looking horizontal polarization sigma0s.
		on	RFI level is unsuitably high for the aft looking horizontal polarization sigma0s.
Aft looking horizontal polarization RFI repair flag	11	off	At least one of the input aft looking horizontal polarization sigma0s is based on repairs for RFI contamination.
		on	Unable to repair the aft looking horizontal polarization sigma0s for RFI contamination.
Mean horizontal polarization Faraday Rotation Flag	12	off	Faraday Rotation has little or no impact on the mean of the forward looking and aft looking horizontal polarization sigma0s.
		on	Faraday Rotation has significant impact on the mean of the forward looking and aft looking horizontal polarization sigma0s.
Forward looking horizontal polarization Faraday Rotation Flag	13	off	Faraday Rotation has little or no impact on the forward looking horizontal polarization sigma0.
		on	Faraday Rotation has significant impact on the forward looking horizontal polarization sigma0.
Aft looking horizontal polarization Faraday Rotation Flag	14	off	Faraday Rotation has little or no impact on the aft looking horizontal polarization sigma0.
		on	Faraday Rotation has significant impact on the aft looking horizontal polarization sigma0.
Mean horizontal polarization Kp flag	15	off	Kp for the mean of the forward and aft looking horizontal polarization sigma0s is acceptably low.
		on	Kp for the mean of forward and aft looking horizontal polarization sigma0s is unacceptably high.
Forward looking horizontal polarization Kp flag	16	off	Kp for the forward looking horizontal polarization sigma0 is acceptably low.
		on	Kp for the forward looking horizontal polarization sigma0 is unacceptably high.
Aft looking horizontal polarization Kp flag	17	off	Kp for the aft looking horizontal polarization sigma0 is acceptably low.
		on	Kp for the aft looking horizontal polarization sigma0 is unacceptably high.

4.6.46 sigma0_qual_flag_xpol

Representative quality flags of cross polarization sigma0 measures in the grid cell.

Type: bit flag uint16

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell_Array Valid_min: Valid_max:

Units: n/a

Name	Bit	Value	Interpretation
Managara 1 1 2 1	Position	(0:off, 1:on)	The many of the Comment to this count of the time
Mean cross polarized quality flag	0	off	The mean of the forward looking and aft looking cross polarized sigma0s has acceptable quality.
quanty mag		on	The mean of the forward looking and aft looking
		OII	cross polarized sigma0s does not have acceptable
			quality.
Forward looking cross	1	off	The forward looking cross polarized sigma0 has
polarized quality flag	1	011	acceptable quality.
polarizou quanty mag		on	The forward looking cross polarized sigma0 has
			questionable or poor quality.
Aft looking cross	2	off	The aft looking cross polarized sigma0 has
polarized quality flag	_		acceptable quality.
		on	The aft looking cross polarized sigma0 has
			questionable or poor quality.
Mean cross polarized	3	off	The mean of the forward looking and aft looking
range flag			cross polarized sigma0s falls within the expected
			range.
		on	The mean of the forward looking and aft looking
			cross polarized sigma0s is out of range.
Forward looking cross	4	off	The forward looking cross polarized sigma0 falls
polarized range flag			within the expected range.
		on	The forward looking cross polarized sigma0 is out of
			range
Aft looking cross	5	off	The aft looking cross polarized sigma0 falls within
polarized range flag			the expected range.
		on	The aft looking cross polarized sigma0 is out of
			range.
Mean cross polarized	6	off	Insignificant RFI detected in the mean of the forward
RFI clean flag			looking and aft looking cross polarized sigma0s.
		on	RFI level is unsuitably high for the mean of the
			forward looking and aft looking cross polarized
36 1 1		00	sigma0s.
Mean cross polarized	7	off	Some components of the mean of the forward
RFI repair flag			looking and aft looking cross polarized sigma0s are
			based on repairs for RFI contamination.
		on	Unable to repair the mean of the forward looking and
			aft looking cross polarized sigma0s for RFI
Eastrand la alting areas	8	off	contamination. Insignificant RFI detected in the forward looking
Forward looking cross polarized RFI clean	8	011	cross polarized sigma0s.
flag			cross polarized signiaus.
nag		on	RFI level is unsuitably high for the forward looking
		l on	cross polarized sigma0s.
Forward looking cross	9	off	At least one of the input forward looking cross
polarized RFI repair			polarized sigma0s is based on repairs for RFI
flag			contamination.
·· <i>o</i>		on	Unable to repair the forward looking cross polarized
			sigma0s for RFI contamination.
Aft looking cross	10	off	Insignificant RFI detected in the aft looking cross

polarized RFI clean flag			polarized sigma0s.
		on	RFI level is unsuitably high for the aft looking cross polarized sigma0s.
Aft looking cross polarized RFI repair flag	11	off	At least one of the input aft looking cross polarized sigma0s is based on repairs for RFI contamination.
		on	Unable to repair the aft looking cross polarized sigma0s for RFI contamination.
Mean cross polarized Faraday Rotation Flag	12	off	Faraday Rotation has little or no impact on the mean of the forward looking and aft looking horizontal polarization sigma0s.
		on	Faraday Rotation has significant impact on the mean of the forward looking and aft looking cross polarized sigma0s.
Forward looking cross polarized Faraday Rotation Flag	13	off	Faraday Rotation has little or no impact on the forward looking cross polarized sigma0.
		on	Faraday Rotation has significant impact on the forward looking cross polarized sigma0.
Aft looking cross polarized Faraday Rotation Flag	14	off	Faraday Rotation has little or no impact on the aft looking cross polarized sigma0.
		on	Faraday Rotation has significant impact on the aft looking cross polarized sigma0.
Mean cross polarized Kp flag	15	off	Kp for the mean of the forward and aft looking horizontal polarization sigma0s is acceptably low.
		on	Kp for the mean of forward and aft looking cross polarized sigma0s is unacceptably high.
Forward looking cross polarized Kp flag	16	off	Kp for the forward looking horizontal polarization sigma0 is acceptably low.
		on	Kp for the forward looking cross polarized sigma0 is unacceptably high.
Aft looking cross polarized Kp flag	17	off	Kp for the aft looking horizontal polarization sigma0 is acceptably low.
, F		on	Kp for the aft looking cross polarized sigma0 is unacceptably high.

4.6.47 **sigma0_qual_flag_vv**

Representative quality flags of vertical polarization sigma0 measures in the grid cell.

Type: bit flag uint16

Group: Soil Moisture Retrieval Data

EASEGridCell_Array Shape:

Valid_min:

Valid_max:

Units: n/a

Name	Bit	Value	Interpretation
	Position	(0:off, 1:on)	_
Mean vertical	0	off	The mean of the forward looking and aft looking
polarization quality flag			vertical polarization sigma0s has acceptable

			quality.
		on	The mean of the forward looking and aft looking
		OII	vertical polarization sigma0s does not have
			acceptable quality.
Forward looking vertical	1	off	The forward looking vertical polarization sigma0
polarization quality flag			has acceptable quality.
p e suiz qui sui j zug		on	The forward looking vertical polarization sigma0
			has questionable or poor quality.
Aft looking vertical	2	off	The aft looking vertical polarization sigma0 has
polarization quality flag			acceptable quality.
, James Jame		on	The aft looking vertical polarization sigma0 has
			questionable or poor quality.
Mean vertical	3	off	The mean of the forward looking and aft looking
polarization range flag	-		vertical polarization sigma0s falls within the
perarramen range rang			expected range.
		on	The mean of the forward looking and aft looking
		OII	vertical polarization sigma0s is out of range.
Forward looking vertical	4	off	The forward looking vertical polarization sigma0
polarization range flag		011	falls within the expected range.
permission runge nung		on	The forward looking vertical polarization sigma0 is
		OII	out of range
Aft looking vertical	5	off	The aft looking vertical polarization sigma0 falls
polarization range flag	3	011	within the expected range.
polarization range mag		on	The aft looking vertical polarization sigma0 is out
		OII	of range.
Mean vertical	6	off	Insignificant RFI detected in the mean of the
polarization RFI clean	O	011	forward looking and aft looking vertical
flag			polarization sigma0s.
6		on	RFI level is unsuitably high for the mean of the
		OH	forward looking and aft looking vertical
			polarization sigma0s.
Mean vertical	7	off	Some components of the mean of the forward
polarization RFI repair	,	011	looking and aft looking vertical polarization
flag			sigma0s are based on repairs for RFI
			contamination.
		on	Unable to repair the mean of the forward looking
		011	and aft looking vertical polarization sigma0s for
			RFI contamination.
Forward looking vertical	8	off	Insignificant RFI detected in the forward looking
polarization RFI clean	Ü	011	vertical polarization sigma0s.
flag			
8		on	RFI level is unsuitably high for the forward
		V-1	looking vertical polarization sigma0s.
Forward looking vertical	9	off	At least one of the input forward looking vertical
polarization RFI repair	-	V.1	polarization sigma0s is based on repairs for RFI
flag			contamination.
ing		on	Unable to repair the forward looking vertical
		J.1.	polarization sigma0s for RFI contamination.
Aft looking vertical	10	off	Insignificant RFI detected in the aft looking
polarization RFI clean		011	vertical polarization sigma0s.
flag			F
5		on	RFI level is unsuitably high for the aft looking
		J.1.	vertical polarization sigma0s.
Aft looking vertical	11	off	At least one of the input aft looking vertical
polarization RFI repair		311	polarization sigma0s is based on repairs for RFI

flag			contamination.
		on	Unable to repair the aft looking vertical polarization sigma0s for RFI contamination.
Mean vertical polarization Faraday Rotation Flag	12	off	Faraday Rotation has little or no impact on the mean of the forward looking and aft looking horizontal polariziation sigma0s.
		on	Faraday Rotation has significant impact on the mean of the forward looking and aft looking vertical polarization sigma0s.
Forward looking vertical polarization Faraday Rotation Flag	13	off	Faraday Rotation has little or no impact on the forward looking vertical polarization sigma0.
		on	Faraday Rotation has significant impact on the forward looking vertical polarization sigma0.
Aft looking vertical polarization Faraday Rotation Flag	14	off	Faraday Rotation has little or no impact on the aft looking vertical polarization sigma0.
		on	Faraday Rotation has significant impact on the aft looking vertical polarization sigma0.
Mean vertical polarization Kp flag	15	off	Kp for the mean of the forward and aft looking horizontal polariziation sigma0s is acceptably low.
		on	Kp for the mean of forward and aft looking vertical polarization sigma0s is unacceptably high.
Forward looking vertical polarization Kp flag	16	off	Kp for the forward looking horizontal polariziation sigma0 is acceptably low.
		on	Kp for the forward looking vertical polarization sigma0 is unacceptably high.
Aft looking vertical polarization Kp flag	17	off	Kp for the aft looking horizontal polariziation sigma0 is acceptably low.
		on	Kp for the aft looking vertical polarization sigma0 is unacceptably high.

4.6.48 sigma0_vv_mean

Mean of 1 km instrument resolution VV-pol σ0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell_Array

Valid_min:

Valid_max:

Units: dB

4.6.49 **sigma0_vv_mean_aft**

Mean of 1 km instrument resolution aft-looking VV-pol σ0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell Array

Valid_min:

Valid_max:

Units: dB

4.6.50 sigma0 vv mean fore

Mean of 1 km instrument resolution fore-looking VV-pol σ0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell_Array

Valid_min: Valid_max:

Units: dB

4.6.51 sigma0_vv_std_dev

Standard deviation of 1 km instrument resolution VV-pol σ 0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell_Array

Valid_min: Valid_max:

Units: dB

4.6.52 sigma0 vv std dev aft

Standard deviation of 1 km instrument resolution aft-looking VV-pol σ 0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data
Shape: EASEGridCell Array

Valid_min: Valid max:

Units: dB

4.6.53 sigma0 vv std dev fore

Standard deviation of 1 km instrument resolution fore-looking VV-pol σ 0 in the 3 km Earth grid cell.

Type: Float32

Group: Radar Uncertainty Data **Shape:** EASEGridCell_Array

Valid_min: Valid max:

Units: dB

4.6.54 **soil_moisture_wagner**

Retrieved normalized change in soil moisture based on Wagner.

Type: Float32

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell_Array

0.02 Valid min: 0.5 Valid max: cm³/cm³ Units:

4.6.55 soil_moisture_error

Net uncertainty measure of soil moisture measure for the Earth based grid cell. -Calculation method is **TBD**. May be replaced by other quality indicators.

Type: Float32

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid min: 0.0

Valid max:

 cm^3/cm^3 **Units:**

4.6.56 soil moisture snapshot

Representative soil moisture measurement for the Earth based grid cell, retrieved using the snapshot algiorithm.

Float32 Type:

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid min: 0.02 Valid max: 0.5 cm³/cm³ **Units:**

4.6.57 soil moisture snapshot DVZ

Retrieved soil moisture for the Earth based grid cell, retrieved using the Dubois/van Zyl snapshot algorithm.

Type: Float32

Group: Soil Moisture Retrieval Data

EASEGridCell_Array Shape:

Valid min: 0.02 Valid_max: 0.5 cm^3/cm^3

Units:

4.6.58 soil moisture snapshot shi

Retrieved soil moisture for the Earth based grid cell, retrieved using the Shi snapshot algorithm.

Type: Float32

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid_min: 0.02 Valid max: 0.5

Units: cm^3/cm^3

4.6.59 soil moisture time series

Retrieved soil moisture for the Earth based grid cell retrieved using the time series algorithm

Type: Float32

Group: Soil Moisture Retrieval Data **Shape:** EASEGridCell Array

 Valid_min:
 0.02

 Valid_max:
 0.5

 Units:
 cm³/cm³

4.6.60 soil_moisture_time_series_KVZ

Retrieved soil moisture for the Earth based grid cell retrieved using the Kim/van Zyl time series algorithm

Type: Float32

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell_Array

 Valid_min:
 0.02

 Valid_max:
 0.5

 Units:
 cm³/cm³

4.6.61 spacecraft_overpass_time_seconds

Number of seconds since a specified epoch (J2000) that represents the spacecraft overpass relative to ground swath.

Type: Float64

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid_min: Valid max:

Units: seconds

4.6.62 spacecraft_overpass_time_utc

Time of spacecraft overpass relative to ground swath in UTC.

Type: char

String Length: 24 characters

Group: Soil Moisture Retrieval Data

Shape: EASEGridCell Array

Valid_min: '2014-10-31T00:00:00.000Z' **Valid max:** '2030-12-31T23:59:60.999Z'

Units: n/a

4.6.63 **surface_flag**

Bit flags that record ambient surface conditions for the grid cell.

Type: bit flag uint16

Soil Moisture Retrieval Data Group:

Shape: EASEGridCell_Array

Valid_min: Valid_max:

Units: n/a

Name	Bit	Value	Interpretation
Name	Position	(0:off, 1:on)	interpretation
3 km static water	0	off	The fraction of the 3 km grid cell area that is over a
body flag			permanent water body is less than metadata element
, ,			PermanentWaterBodyThreshold. Determined by
			DEM.
		on	The fraction of the 3 km grid cell area that is over a
			permanent water body is greater than or equal to
			metadata element PermanentWaterBodyThreshold.
			Determined by DEM.
3 km radar water	1	off	Radar retrieval algorithm did not detect significant
body detection flag			surface water within the 3 km grid cell.
		on	Radar retrieval algorithm detected significant surface
			water withing the 3 km grid cell.
3 km urban area flag	2	off	The fraction of the 3 km grid cell area that is over
			urban development is less than metadata element
			UrbanAreaThreshold.
		on	The fraction of the 3 km grid cell area that is over
			urban development is greater than or equal to
			metadata element UrbanAreaThreshold.
3 km precipitation	3	off	No precipitation detected within the 3 km grid cell
flag			when data were being acquired.
		on	Precipitation detected within the 3 km grid cell when
	_		data were being acquired
3 km snow or ice flag	4	off	No snow or ice detected within the 3 km grid cell.
		on	Snow and/or ice were detected within the 3 km grid
2.1		22	cell.
3 km permanent snow	5	off	The fraction of the 3 km grid cell area that is over
or ice flag			permanent snow or ice is less than a specified
			algorithmic threshold.
		on	The fraction of the 3 km grid cell area that is over
			permanent snow or ice is greater than or equal to a
2 Irm from around	6	off	specified algorithmic threshold. No frozen ground detected within the 3 km grid cell.
3 km frozen ground flag	0	011	No frozen ground detected within the 3 km grid cen.
110.5		On	Frozen ground detected within the 3 km grid cell.
3 km mountainous	7	on off	The variability of land elevation in the 3 km grid cell
terrain flag	/	011	is less than metadata element
wiiaiii iiag			MountainousTerrainThreshold.
		on	The variability of land elevation in the 3 km grid cell
		OII	is greater than or equal to metadata element
			Mountainous Terrain Threshold.
3 km dense	8	off	The vegetation density within the 3 km grid cell is less
vegetation flag	3		than metadata element DenseVegetationThreshold.
- 3		on	The vegetation density within the 3 km grid cell area

			is greater than or equal to metadata element DenseVegetationThreshold.
3 km nadir region flag	9	off	Data within the the grid cell were not acquired in the nadir region of the swath where sigma0s may not meet the 3 km resolution requirement.
		on	A significant fraction (TBD) of the 3 km grid cell data were acquired within the nadir region of the swath where sigma0s may not meet the 3 km resolution requirement.
3 km coastal mask flag	10	off	Data within the the grid cell were not acquired in the coastal region of the large water bodies where especially brightness temperature on land may get severly contaminated due to presense of water.
		on	Data within the the grid cell were acquired in the coastal region of the large water bodies where especially brightness temperature on land may get severly contaminated due to presense of water.

4.6.64 **surface_temperature**

Temperature at land surface based on ancillary data.

Type: Float32

Group: Ancillary Data

Shape: EASEGridCell_Array

Valid_min: -50.0 **Valid max:** 60.0

Units: deg Celsius

4.6.65 vegetation water content NDVI

Representative measure of water in the vegetation within the 3 km grid cell based on the normalized difference vegetation index.

Type: Float32

Group: Ancillary Data

Shape: EASEGridCell Array

Valid_min:0.0Valid_max:10.0Units: kg/m^3

4.6.66 vegetation_water_content_RVI

Representative measure of water in the vegetation within the 3 km grid cell based on the radar vegetation index.

Type: Float32

Group: Ancillary Data

Shape: EASEGridCell Array

Valid_min: 0.0

Initial Release JPL D-72546 June 12, 2014 SMAP L2 Active Soil Moisture Product Specification Document

 $10.0 \\ kg/m^3$ Valid_max: **Units:**

5 REFERENCES

5.1 Requirements

- SMAP Level 1 Mission Requirements and Success Criteria. (Appendix O to the Earth Systematic Missions Program Plan: Program-Level Requirements on the Soil Moisture Active Passive Project.). NASA Headquarters/Earth Science Division, Washington, DC.
- SMAP Level 2 Science Requirements. SMAP Project, JPL D-45955, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Science Algorithms and Validation Requirements. SMAP Project, JPL D-45993, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Mission System Requirements. SMAP Project, JPL D-45962, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 4 Science Data System Requirements. SMAP Project, JPL D-61680, Jet Propulsion Laboratory, Pasadena, CA.

5.2 Plans

- SMAP Science Data Management and Archive Plan. SMAP Project, JPL D-45973, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Science Data Calibration and Validation Plan. SMAP Project, JPL D-52544, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Applications Plan. SMAP Project, JPL D-53082, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Science Data System Management Plan. SMAP Project, JPL D-xxxxx, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Project Implementation Plan. SMAP Project, JPL D-45939, Jet Propulsion Laboratory, Pasadena, CA.

5.3 Algorithm Theoretical Basis Documents

- SMAP Algorithm Theoretical Basis Document: L1B and L1C Radar Products.
 SMAP Project, JPL D-53052, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L1B Radiometer Product. SMAP Project, GSFC-SMAP-006, NASA Goddard Space Flight Center, Greenbelt, MD.
- SMAP Algorithm Theoretical Basis Document: L1C Radiometer Product. SMAP Project, JPL D-53053, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L2 & L3 Radar Soil Moisture (Active) Products. SMAP Project, JPL D-66479, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L2 & L3 Radiometer Soil Moisture (Passive) Products. SMAP Project, JPL D-66480, Jet Propulsion Laboratory, Pasadena, CA.

- SMAP Algorithm Theoretical Basis Document: L2 & L3 Radar/Radiometer Soil Moisture (Active/Passive) Products. SMAP Project, JPL D-66481, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L3 Radar Freeze/Thaw (Active)
 Product. SMAP Project, JPL D-66482, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L4 Surface and Root-Zone Soil Moisture Product. SMAP Project, JPL D-66483, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L4 Carbon Product. SMAP Project, JPL D-66484, Jet Propulsion Laboratory, Pasadena, CA.

5.4 Product Specification Documents

- SMAP Level 1A Radar Product Specification Document. SMAP Project, JPL D-72543, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1B Radar (L1C_S0_LoRes) Product Specification Document.
 SMAP Project, JPL D-72544, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1A Radiometer Product Specification Document. SMAP Project,
 JPL D-xxxxx, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1B Radiometer (L1B_TB) Product Specification Document. SMAP Project, JPL D-xxxxx, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1C Radiometer (L1C_TB) Product Specification Document. SMAP Project, JPL D-72545, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2 Active Soil Moisture (L2_SM_A) Product Specification Document. SMAP Project, JPL D-72546, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2 Passive Soil Moisture (L2_SM_P) Product Specification Document. SMAP Project, JPL D-72547, Jet Propulsion Laboratory, Pasadena, CA
- SMAP Level 2 Active/Passive Soil Moisture (L2_SM_AP) Product Specification Document. SMAP Project, JPL D-72548, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Freeze-Thaw (L3_FT_A) Product Specification Document.
 SMAP Project, JPL D-72549, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Active Soil Moisture (L3_SM_A) Product Specification Document. SMAP Project, JPL D-72550, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Passive Soil Moisture (L3_SM_P) Product Specification Document. SMAP Project, JPL D-72551, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Active/Passive Soil Moisture (L3_SM_AP) Product Specification Document. SMAP Project, JPL D-72552, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 4 Carbon (L4_C) Product Specification Document. SMAP Project, JPL D-xxxxx, Jet Propulsion Laboratory, Pasadena, CA.

 SMAP Level 4 Soil Moisture (L4_SM) Product Specification Document. SMAP Project, JPL D-xxxxx, Jet Propulsion Laboratory, Pasadena, CA.

5.5 Others

- Interface Control Document Between the Soil Moisture Active Passive (SMAP) Science Data System (SDS) and the Alaska Satellite Facility (ASF) and National Snow and Ice Data Center (NSIDC) Distributed Active Archive Centers (DAACs), Goddard Space Flight Center 423-xx-xx, TBD.
- SMAP Pointing, Positioning, Phasing and Coordinate Systems, Volume 0: Definitions and Principle Coordinate Systems. SMAP Project, JPL D-46018, Jet Propulsion Laboratory, Pasadena, CA.
- ISO 19115:2003(E) International Standard Geographic Information Metadata, May 1, 2003.
- ISO 19115-2:2009 International Standard Geographic Information Part 2:Extensions for imagery and gridded data, December 12, 2009.
- ISO 19139:2007 International Standard Geographic Information Metadata XML schema implementation, May 14 2009.
- Introduction to HDF5, The HDF Group. URL: http://www.hdfgroup.org/HDF5/doc/H5.intro.html
- HDF5: API Specification Reference Manual, The HDF Group. URL: http://www.hdfgroup.org/HDF5/doc/RM/RM H5Front.html
- HDF5 User's Guide Release 1.8.9, The HDF Group. URL: http://hdfgroup.com/HDF5/doc/UG
- NetCDF Climate and Forecast (CF) Metadata Conventions, Version 1.6, December 5, 2011.
- EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets, Brodzik, M.J., et. al., National Snow and Ice Data Center, Cooperative Institute of Environmental Sciences, University of Colorado, ISPRS International Journal of Geo-Information, ISSN 2220-9964, DOI: 10.3390/igji1010032.

6 APPENDIX A: ACRONYMS AND ABBREVIATIONS

This is the standard Soil Moisture Active Passive (SMAP) Science Data System (SDS) list of acronyms and abbreviations. Not all of these acronyms and abbreviations appear in every SMAP SDS document.

ADT Algorithm Development Team

AMSR Advanced Microwave Scanning Radiometer
ANSI American National Standards Institute

APF Algorithm Parameter File
ARS Agricultural Research Service
ASF Alaska Satellite Facility

ATBD Algorithm Theoretical Basis Document
ATLO Assembly Test Launch and Operations
BFPQ Block Floating Point Quantization

BIC Beam Index Crossing

CARA Criticality and Risk Assessment

CBE Current Best Estimate

CCB Configuration Control Board

CCSDS Consultative Committee on Space Data Systems

CDR Critical Design Review

CEOS Committee on Earth Observing Systems
CF Climate and Forecast (metadata convention)

CM Configuration Management

CM Center of Mass

CONUS Continental United States
COTS Commercial Off the Shelf

CR Change Request

DAAC Distributed Active Archive Center

DB Database

DBA Database Administrator

dB Decibels deg Degrees

deg/secDegrees per seconddeg CDegrees Celsius

DEM Digital Elevation Model
DFM Design File Memorandum
DIU Digital Interface Unit

DN Data Number

DOORS Dynamic Object Oriented Requirements

DQC
DSK
Digital Skin Kernel
DVD
Digital Versatile Disc
EASE
Equal Area Scalable Earth

ECMWF European Centre for Medium Range Weather Forecasts

ECHO EOS Clearing House

ECI Earth Centered Inertial Coordinate System
ECR Earth Centered Rotating Coordinate System

ECR Engineering Change Request

ECS EOSDIS Core System

EDOS EOS Data Operations System

EM Engineering Model
EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System

EPO Education and Public Outreach

ESDIS Earth Science Data and Information System Project

ESDT Earth Science Data Type

ESSP Earth Science System Pathfinder

ET Ephemeris Time
EU Engineering Units
FOV Field of View

FRB Functional Requirements Baseline

FS Flight System
FSW Flight Software
F/T Freeze/Thaw

FTP File Transfer Protocol

Gbyte Gigabyte

GDS Ground Data System
GHA Greenwich Hour Angle

GHz Gigahertz

GLOSIM Global Simulation

GMAO Government Modeling and Assimilation Office

GMT Greenwich Mean Time
GN Ground Network

GPMC Governing Program Management Council

GPP Gross Primary Production
GPS Global Positioning System
GSE Ground Support Equipment
GSFC Goddard Space Flight Center
HDF Hierarchical Data Format
HK Housekeeping (telemetry)

Hz Hertz

HSD Health and Status Data

ICE Integrated Control Electronics

ICESat Ice, Cloud and Land Elevation Satellite

IDL Interactive Data Language I&T Integration and Test

ICD Interface Control Document

IEEE Institute of Electrical and Electronics Engineers

IFOV Instantaneous Field of View

I/O Input/Output IOC In-Orbit Checkout

JPL D-72546

IRU Inertial Reference Unit

ISO International Organization for Standardization IV&V Independent Verification and Validation **ITAR** International Traffic in Arms Regulations

Integration and Test I&T JPL Jet Propulsion Laboratory

kHz Kilohertz Kilometers km

LAN Local Area Network LBT Loopback Trap LEO Low Earth Orbit

LEOP Launch and Early Operations

LOE Level Of Effort Life Of Mission LOM LOS Loss of Signal LSK Leap Seconds Kernel

Level Zero Processing Facility **LZPF**

Meters m Megahertz MHz

MIT Massachusetts Institute of Technology

Monthly Management Review **MMR** Memorandum of Agreement **MOA MOC** Mission Operations Center

Moderate Resolution Imaging Spectroradiometer MODIS

Mission Operations System MOS

m/s Meters per second Milliseconds ms Mission System MS

NAIF Navigation and Ancillary Information Facility National Aeronautics and Space Administration **NASA NCEP** National Centers for Environmental Protection

NCP North Celestial Pole

National Center for Supercomputing Applications **NCSA**

Noise Equivalent Diode Temperature **NEDT**

NEE Net Ecosystem Exchange Near Earth Network **NEN**

Network Common Data Form netCDF **NFS** Network File System/Server

NASA Integrated Services Network **NISN**

NRT Near Real Time

NOAA National Oceanic and Atmospheric Administration

NSIDC National Snow and Ice Data Center

Non-Volatile Memory **NVM**

NWP Numerical Weather Prediction

NANot applicable

OCO **Orbiting Carbon Observatory** ORBNUM Orbit Number File

OODT Object Oriented Data Technology
ORR Operational Readiness Review
ORT Operational Readiness Test

OSSE Observing System Simulation Experiment

OSTC One Second Time Command
PALS Passive and Active L-Band System

PALSAR Phased Array L-Band Synthetic Aperture Radar

PcK Planetary Constants Kernel PDR Preliminary Design Review

PPPCS Pointing, Position, Phasing and Coordinate System

PR Problem Report

PRF Pulse Repetition Frequency
PRI Pulse Repetition Interval

PROM Programmable Read Only Memory
PSD Product Specification Document

QA Quality Assurance

rad Radians

RAM Random Access Memory RBA Reflector Boom Assembly

RBD Rate Buffered Data
RBE Radiometer Back End

RDD Release Description Document RDE Radiometer Digital Electronics

RF Radio Frequency
RFA Request For Action
RFE Radiometer Front End

RFI Radio Frequency Interference

RMS Root mean square
RSS Root sum square
ROM Read Only Memory
RPM revolutions per minute
RVI Radar Vegetation Index
SA System Administrator
SAR Synthetic Aperture Radar

S/C Spacecraft

SCE Spin Control Electronics

SCLK Spacecraft Clock

SDP Software Development Plan

SDS Science Data System
SDT Science Definition Team
SI International System

SITP System Integration and Test Plan SMAP Soil Moisture Active Passive SMEX Soil Moisture Experiment

SMOS Soil Moisture and Ocean Salinity Mission

Initial Release	JPL D-72546
June 12, 2014	SMAP L2 Active Soil Moisture Product Specification Document

SMP Software Management Plan

SNR Signal to noise ratio SOC Soil Organic Carbon

SOM Software Operators Manual SOA Software Ouality Assurance

SPDM Science Process and Data Management

SPG Standards Process Group

SPK Spacecraft Kernel

SQA Software Quality Assurance
SPS Science Production Software
SRF Science Orbit Reference Frame
SRR System Requirements Review
SRTM Shuttle Radar Topography Mission
SSM/I Special Sensor Microwave/Imager

STP Software Test Plan

sec Seconds

TAI International Atomic Time TB Brightness Temperature

TBC To Be Confirmed
TBD To Be Determined
TBR To Be Resolved

TCP/IP Transmission Control Protocol/Internet Protocol

TEC Total Electron Content

TM Trademark
TOA Time of Arrival
TPS Third Party Software

UML Unified Modeling Language U-MT University of Montana

USDA United States Department of Agriculture

UTC Coordinated Universal Time V&V Verification and Validation VWC Vegetation Water Content

7 APPENDIX B: CODE EXAMPLES

[To be typeset in Courier. MATLAB, IDL, Fortran, or C is fine]